Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5855, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484269

RESUMEN

The star [Formula: see text] Pictoris harbors a young planetary system of about 20 million years old, which is characterized by the presence of a gaseous and dusty debris disk, at least two massive planets and many minor bodies. For more than thirty years, exocomets transiting the star have been detected using spectroscopy, probing the gaseous part of the cometary comas and tails. The detection of the dusty component of the tails can be performed through photometric observations of the transits. Since 2018, the Transiting Exoplanet Survey Satellite has observed [Formula: see text] Pic for a total of 156 days. Here we report an analysis of the TESS photometric data set with the identification of a total of 30 transits of exocomets. Our statistical analysis shows that the number of transiting exocomet events (N) as a function of the absorption depth (AD) in the light curve follows a power law in the form [Formula: see text], where [Formula: see text]. This distribution of absorption depth leads to a differential comet size distribution proportional to [Formula: see text], where [Formula: see text], showing a striking similarity to the size distribution of comets in the Solar system and the distribution of a collisionally relaxed population ([Formula: see text]).

2.
Science ; 374(6565): 330-332, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648350

RESUMEN

Stars and planets both form by accreting material from a surrounding disk. Because they grow from the same material, theory predicts that there should be a relationship between their compositions. In this study, we search for a compositional link between rocky exoplanets and their host stars. We estimate the iron-mass fraction of rocky exoplanets from their masses and radii and compare it with the compositions of their host stars, which we assume reflect the compositions of the protoplanetary disks. We find a correlation (but not a 1:1 relationship) between these two quantities, with a slope of >4, which we interpret as being attributable to planet formation processes. Super-Earths and super-Mercuries appear to be distinct populations with differing compositions, implying differences in their formation processes.

3.
Mon Not R Astron Soc ; 474(3): 4264-4277, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30344345

RESUMEN

We present near infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Telescope (CFHT). We present the observing strategies and data reduction methods which delivered time series photometry with statistical photometric precision as low as 0.11%. We performed a Bayesian analysis to model the eclipse parameters and systematics simultaneously. The measured planet-to-star flux ratios allowed us to constrain the thermal emission from the day side of these hot Jupiters, as we derived the planet brightness temperatures. Our results combined with previously observed eclipses reveal an excess in the brightness temperatures relative to the blackbody prediction for the equilibrium temperatures of the planets for a wide range of heat redistribution factors. We find a trend that this excess appears to be larger for planets with lower equilibrium temperatures. This may imply some additional sources of radiation, such as reflected light from the host star and/or thermal emission from residual internal heat from the formation of the planet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...