Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 5: 426, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237314

RESUMEN

Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X({X≠E})) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b 5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins.

2.
Biophys J ; 106(2): 382-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24461013

RESUMEN

Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Disferlina , Humanos , Magnesio/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/genética , Mutagénesis , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Estroncio/metabolismo
3.
Biochemistry ; 52(33): 5585-92, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23859474

RESUMEN

Ferlins are large multi-C2 domain membrane proteins involved in membrane fusion and fission events. In this study, we investigate the effects of binding of the C2 domains of otoferlin, dysferlin, and myoferlin on the structure of lipid bilayers. Fluorescence measurements indicate that multi-C2 domain constructs of myoferlin, dysferlin, and otoferlin change the lipid packing of both small unilamellar vesicles and giant plasma membrane vesicles. The activities of these proteins were enhanced in the presence of calcium and required negatively charged lipids like phosphatidylserine or phosphatidylglycerol for activity. Experiments with individual domains uncovered functional differences between the C2A domain of otoferlin and those of dysferlin and myoferlin, and truncation studies suggest that the effects of each subsequent C2 domain on lipid ordering appear to be additive. Finally, we demonstrate that the activities of these proteins on membranes are insensitive to high salt concentrations, suggesting a nonelectrostatic component to the interaction between ferlin C2 domains and lipid bilayers. Together, the data indicate that dysferlin, otoferlin, and myoferlin do not merely passively adsorb to membranes but actively sculpt lipid bilayers, which would result in highly curved or distorted membrane regions that could facilitate membrane fusion, membrane fission, or recruitment of other membrane-trafficking proteins.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de la Membrana/química , Proteínas Musculares/química , Animales , Sitios de Unión/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Disferlina , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fluidez de la Membrana , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
4.
J Biol Chem ; 285(44): 34220-30, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20729200

RESUMEN

The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Membrana Celular/metabolismo , Proteínas de Cloroplastos , Clonación Molecular , Guanosina Trifosfato/química , Hidrólisis , Modelos Biológicos , Pisum sativum/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Tilacoides/metabolismo
5.
Plant Physiol ; 153(3): 1112-22, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20348213

RESUMEN

Induction of intracellular and secreted acid phosphatases (APases) is a widespread response of orthophosphate (Pi)-starved (-Pi) plants. APases catalyze Pi hydrolysis from a broad range of phosphomonoesters at an acidic pH. The largest class of nonspecific plant APases is comprised of the purple APases (PAPs). Although the biochemical properties, subcellular location, and expression of several plant PAPs have been described, their physiological functions have not been fully resolved. Recent biochemical studies indicated that AtPAP26, one of 29 PAPs encoded by the Arabidopsis (Arabidopsis thaliana) genome, is the predominant intracellular APase, as well as a major secreted APase isozyme up-regulated by -Pi Arabidopsis. An atpap26 T-DNA insertion mutant lacking AtPAP26 transcripts and 55-kD immunoreactive AtPAP26 polypeptides exhibited: (1) 9- and 5-fold lower shoot and root APase activity, respectively, which did not change in response to Pi starvation, (2) a 40% decrease in secreted APase activity during Pi deprivation, (3) 35% and 50% reductions in free and total Pi concentration, respectively, as well as 5-fold higher anthocyanin levels in shoots of soil-grown -Pi plants, and (4) impaired shoot and root development when subjected to Pi deficiency. By contrast, no deleterious influence of AtPAP26 loss of function occurred under Pi-replete conditions, or during nitrogen or potassium-limited growth, or oxidative stress. Transient expression of AtPAP26-mCherry in Arabidopsis suspension cells verified that AtPAP26 is targeted to the cell vacuole. Our results confirm that AtPAP26 is a principal contributor to Pi stress-inducible APase activity, and that it plays an important role in the Pi metabolism of -Pi Arabidopsis.


Asunto(s)
Aclimatación , Fosfatasa Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Glicoproteínas/metabolismo , Fosfatos/deficiencia , Aclimatación/efectos de los fármacos , Fosfatasa Ácida/genética , Alelos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicoproteínas/genética , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/enzimología , Isoenzimas/metabolismo , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Fosfatos/farmacología , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Regulación hacia Arriba/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/enzimología
6.
J Biol Chem ; 284(22): 14891-903, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19293157

RESUMEN

The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) function in thylakoid biogenesis to target integral membrane proteins to thylakoids. Unlike cytosolic SRP receptors in eukaryotes, cpFtsY partitions between thylakoid membranes and the soluble stroma. Based on sequence alignments, a membrane-binding motif identified in Escherichia coli FtsY appears to be conserved in cpFtsY, yet whether the proposed motif is responsible for the membrane-binding function of cpFtsY has yet to be shown experimentally. Our studies show that a small N-terminal region in cpFtsY stabilizes a membrane interaction critical to cpFtsY function in cpSRP-dependent protein targeting. This membrane-binding motif is both necessary and sufficient to direct cpFtsY and fused passenger proteins to thylakoids. Our results demonstrate that the cpFtsY membrane-binding motif may be functionally replaced by the corresponding region from E. coli, confirming that the membrane-binding motif is conserved among organellar and prokaryotic homologs. Furthermore, the capacity of cpFtsY for lipid binding correlates with liposome-induced GTP hydrolysis stimulation. Mutations that debilitate the membrane-binding motif in cpFtsY result in higher rates of GTP hydrolysis, suggesting that negative regulation is provided by the intact membrane-binding region in the absence of a bilayer. Furthermore, NMR and CD structural studies of the N-terminal region and the analogous region in the E. coli SRP receptor revealed a conformational change in secondary structure that takes place upon lipid binding. These studies suggest that the cpFtsY membrane-binding motif plays a critical role in the intramolecular communication that regulates cpSRP receptor functions at the membrane.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , GTP Fosfohidrolasas/metabolismo , Membranas Intracelulares/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Alanina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas de Cloroplastos , Dicroismo Circular , Escherichia coli , Hidrólisis , Complejos de Proteína Captadores de Luz/metabolismo , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Pisum sativum , Péptidos/química , Péptidos/metabolismo , Fenilalanina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA