Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 9(32): 22586-22604, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29854300

RESUMEN

Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting. We analyzed expression of the WNT coreceptors LRP5 and LRP6 in human breast cancer samples. As previously described, LRP6 was overexpressed in TNBCs. However, we also showed, for the first time, that LRP5 was overexpressed in TNBCs too. The knockdown of LRP5 or LRP6 decreased tumorigenesis in vitro and in vivo, identifying both receptors as potential treatment targets in TNBC. The apoptotic effect of LRP5 knockdown was more robust than that of LRP6 depletion. We analyzed and compared the transcriptomes of cells depleted of LRP5 or LRP6, to identify genes specifically deregulated by LRP5 potentially implicated in cell death. We identified serine/threonine kinase 40 (STK40) as one of two genes specifically downregulated soon after LRP5 depletion. STK40 was found to be overexpressed in TNBCs, relative to other breast cancer subtypes, and in various other tumor types. STK40 depletion decreased cell viability and colony formation, and induced the apoptosis of TNBC cells. In addition, STK40 knockdown impaired growth in an anchorage-independent manner in vitro and slowed tumor growth in vivo. These findings identify the largely uncharacterized putative protein kinase STK40 as a novel candidate treatment target for TNBC.

2.
Thyroid ; 24(1): 43-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24256343

RESUMEN

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare tumor that is caused by activating mutations in the proto-oncogene RET. Vandetanib, a tyrosine-kinase inhibitor, has been recently approved to treat adult patients with metastatic MTC. The aim of this study was to investigate changes in signaling pathways induced by vandetanib treatment in preclinical MTC models, using the reverse-phase protein array method (RPPA). METHODS: The human TT cell line was used to assess in vitro and in vivo activity of vandetanib. Protein extracts from TT cells or TT xenografted mice, treated by increasing concentrations of vandetanib for different periods of time, were probed with a set of 12 antibodies representing major signaling pathways, using RPPA. Results were validated using two distinct protein detection methods: Western immunoblotting and immunohistochemistry. RESULTS: Vandetanib displays antiproliferative and antiangiogenic activities and inhibits RET autophosphorylation. The MAPK and AKT pathways were the two major signaling pathways inhibited by vandetanib. Interestingly, phosphorylated levels of NFκB-p65 were significantly increased by vandetanib. Comparable results were obtained in both the in vitro and in vivo approaches, as well as for the protein detection methods. However, some discrepancies were observed between RPPA and Western immunoblotting, possibly due to lack of specificity of the primary antibodies used. CONCLUSIONS: Overall, our results confirmed the interest of RPPA for screening global changes induced in signaling pathways by kinase inhibitors. MAPK and AKT were identified as the main pathways involved in vandetanib response in MTC models. Our results also suggest alternative routes for controlling the disease, and provide a rationale for the development of therapeutic combinations based on the comprehensive identification of molecular events induced by inhibitors.


Asunto(s)
Piperidinas/uso terapéutico , Quinazolinas/uso terapéutico , Neoplasias de la Tiroides/tratamiento farmacológico , Adulto , Animales , Carcinoma Neuroendocrino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Thyroid ; 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23822199

RESUMEN

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare tumor that is due to activating mutations in the proto-oncogene RET. Vandetanib, a tyrosine-kinase inhibitor, has been recently approved to treat adult patients with metastatic MTC. The aim of this study was to investigate changes in signaling pathways induced by vandetanib treatment in preclinical MTC models, using the reverse-phase protein array method (RPPA). METHODS: The human TT cell line was used to assess in vitro and in vivo activity of vandetanib. Protein extracts from TT cells or TT xenografted mice, treated by increasing concentrations of vandetanib for different periods of time, were probed with a set of 12 antibodies representing major signaling pathways, using RPPA. Results were validated using two distinct protein detection methods, western-immunoblotting and immunohistochemistry. RESULTS: Vandetanib displays antiproliferative and antiangiogenic activities and inhibits RET auto-phosphorylation. MAPK and AKT pathways were the two major signaling pathways inhibited by vandetanib. Interestingly, phosphorylated levels of NFκB-p65 were significantly increased by vandetanib. Comparable results were obtained in both the in vitro and in vivo approaches as well as for the protein detection methods, although some discrepancies were observed between RPPA and western-immunoblotting. CONCLUSIONS: Results confirmed the reliability and the utility of RPPA for screening global changes induced in signaling pathways by kinase inhibitors. MAPK and AKT were identified as the main pathways involved in vandetanib response in MTC models. Our results also suggest alternative routes for controlling the disease and provide a rationale for the development of therapeutic combinations based on the comprehensive identification of molecular events induced by inhibitors.

4.
PLoS One ; 8(5): e63712, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700430

RESUMEN

Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular , Supervivencia sin Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Terapia Molecular Dirigida , Modelos de Riesgos Proporcionales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteoma/genética , Proteoma/metabolismo , ARN Interferente Pequeño/genética , Transcriptoma , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/mortalidad
5.
Cancer Res ; 73(2): 813-23, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23144294

RESUMEN

Breast cancers are composed of molecularly distinct subtypes with different clinical outcomes and responses to therapy. To discover potential therapeutic targets for the poor prognosis-associated triple-negative breast cancer (TNBC), gene expression profiling was carried out on a cohort of 130 breast cancer samples. Polo-like kinase 1 (PLK1) was found to be significantly overexpressed in TNBC compared with the other breast cancer subtypes. High PLK1 expression was confirmed by reverse phase protein and tissue microarrays. In triple-negative cell lines, RNAi-mediated PLK1 depletion or inhibition of PLK1 activity with a small molecule (BI-2536) induced an increase in phosphorylated H2AX, G(2)-M arrest, and apoptosis. A soft-agar colony assay showed that PLK1 silencing impaired clonogenic potential of TNBC cell lines. When cells were grown in extracellular matrix gels (Matrigel), and exposed to BI-2536, apoptosis was observed specifically in TNBC cancerous cells, and not in a normal cell line. When administrated as a single agent, the PLK1 inhibitor significantly impaired tumor growth in vivo in two xenografts models established from biopsies of patients with TNBC. Most importantly, the administration of BI-2536, in combination with doxorubicin + cyclophosphamide chemotherapy, led to a faster complete response compared with the chemotherapy treatment alone and prevented relapse, which is the major risk associated with TNBC. Altogether, our observations suggest PLK1 inhibition as an attractive therapeutic approach, in association with conventional chemotherapy, for the management of patients with TNBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Animales , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...