Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 21(10): 12657-67, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736486

RESUMEN

We report on sensing and transmission characteristics of rocking filters fabricated in a silica side-hole fiber with group birefringence changing its sign at certain wavelength (λ(G = 0)), which corresponds to parabolic-like spectral dependence of beat length. Unusual birefringence dispersion of the side-hole fiber is induced by an elliptical germanium doped core located in a narrow glass bridge between two holes. Rocking filters fabricated in such a fiber have two resonances of the same order located on both sides of λ(G = 0). The sensitivity of both resonances has an opposite sign, which makes it possible to double the response of the rocking filter by applying the differential interrogation scheme. We demonstrate that in this way a pressure sensitivity of the rocking filter can be enlarged to 132 nm/MPa. We also show that by fabricating the rocking filter with a period close to maximum beat length a coupling between polarization modes can be obtained in a broad band reaching 240 nm.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
2.
Opt Express ; 20(21): 23320-30, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23188295

RESUMEN

We report on the sensing characteristics of rocking filters fabricated in two microstructured fibers with enhanced polarimetric sensitivity to hydrostatic pressure. The filter fabricated in the first fiber shows a very high sensitivity to pressure ranging from 16.2 to 43.4 nm/MPa, depending on the resonance order and features an extremely low cross-sensitivity between pressure and temperature 28 ÷ 89 × 10(3) K/MPa. The filter fabricated in the second fiber has an extreme sensitivity to pressure ranging from -72.6 to -177 nm/MPa, but a less favorable cross-sensitivity between pressure and temperature of 1.05 ÷ 3.50 × 10(3) K/MPa. These characteristics allow using the rocking filters for pressure measurements with mbar resolution.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Filtración/instrumentación , Presión Hidrostática , Refractometría/instrumentación , Transductores de Presión , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Miniaturización
3.
Opt Lett ; 34(1): 76-8, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19109645

RESUMEN

An optical refractometer based on a birefringent (Hi-Bi) fiber Bragg grating (FBG) written in a new H-shaped fiber structure is proposed. This structure is formed by opening the two holes of a side-hole fiber using chemical etching. When the Hi-Bi FBG is immersed in different liquids, different responses of the slow and fast wavelengths are obtained. The refractometer is also capable of simultaneous measurement of refractive index and temperature.

4.
Opt Express ; 15(18): 11073-81, 2007 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19547463

RESUMEN

We present a new method for measuring the group dispersion of the fundamental mode of a holey fiber over a wide wavelength range by white-light interferometry employing a low-resolution spectrometer. The method utilizes an unbalanced Mach-Zehnder interferometer with a fiber under test placed in one arm and the other arm with adjustable path length. A series of spectral signals are recorded to measure the equalization wavelength as a function of the path length, or equivalently the group dispersion. We reveal that some of the spectral signals are due to the fundamental mode supported by the fiber and some are due to light guided by the outer cladding of the fiber. Knowing the group dispersion of the cladding made of pure silica, we measure the wavelength dependence of the group effective index of the fundamental mode of the holey fiber. Furthermore, using a full-vector finite element method, we model the group dispersion and demonstrate good agreement between experiment and theory.

5.
Opt Express ; 15(21): 13547-56, 2007 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-19550623

RESUMEN

We demonstrate experimentally that bending loss in large mode area photonic crystal fibers oscillates with wavelength. To do so we carried out loss measurements for different fiber bend radii and for different angular orientations. These results confirm the oscillatory behavior of bending loss vs. wavelength as predicted recently by numerical analysis [J. Olszewski et al., Opt. Express 13, 6015 (2005)]. We also found good agreement between our measurement results and our simulations relying on a finite element method with perfectly matched layers and an equivalent index model.

6.
Opt Express ; 14(1): 397-404, 2006 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19503353

RESUMEN

We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas intermodal sidebands shifted from 33 to 63 THz. These observations are in excellent agreement with the experimental characterization and theoretical estimates of phase and group velocities for the respective fiber modes.

7.
Appl Opt ; 40(12): 1911-20, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-18357191

RESUMEN

Modal birefringence and its sensitivity to temperature and hydrostatic pressure were measured versus wavelength in three elliptical-core fibers and one fiber with stress-induced birefringence. We carried out the measurements in the spectral range from 633 to 843 nm by using interferometric methods. In fibers with elliptical cores all the measured parameters showed high chromatic dependence, whereas in fibers with stress-induced birefringence this dependence was weak. We modeled the dispersion characteristics of two elliptical-core fibers by using the modified perturbation approach first proposed by Kumar. The modification consists of introducing into the expression for the normalized propagation constants an additional perturbation term that contains information about stress-induced birefringence. The results of modeling show that the temperature and pressure sensitivity of elliptical-core fiber are associated primarily with variations in stress induced by these parameters. The agreement between measured and calculated values of sensitivity in the worst case was equal to 20% for modal birefringence and temperature sensitivity and 50% for pressure sensitivity. Lower agreement between measured and calculated values of pressure sensitivity is most probably associated with uncertainties in the material constants used in modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA