Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Anim ; 73(1): 11-19, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37460310

RESUMEN

The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.


Asunto(s)
Angiotensina II , Síndrome Cardiorrenal , Humanos , Ratones , Animales , Cloruro de Sodio Dietético/efectos adversos , Nefrectomía/efectos adversos , Riñón , Síndrome Cardiorrenal/tratamiento farmacológico , Albúminas
2.
J Biochem ; 174(3): 279-289, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37279646

RESUMEN

Protein methylation is mainly observed in lysine, arginine and histidine residues. Histidine methylation occurs at one of two different nitrogen atoms of the imidazole ring, producing Nτ-methylhistidine and Nπ-methylhistidine, and it has recently attracted attention with the identification of SETD3, METTL18 and METTL9 as catalytic enzymes in mammals. Although accumulating evidence had suggested the presence of more than 100 proteins containing methylated histidine residues in cells, much less information has been known regarding histidine-methylated proteins than lysine- and arginine-methylated ones, because no method has been developed to identify substrates for histidine methylation. Here, we established a method to screen novel target proteins for histidine methylation, using biochemical protein fractionation combined with the quantification of methylhistidine by LC-MS/MS. Interestingly, the differential distribution pattern of Nτ-methylated proteins was found between the brain and skeletal muscle, and identified γ-enolase where the His-190 at the Nτ position is methylated in mouse brain. Finally, in silico structural prediction and biochemical analysis showed that the His-190 in γ-enolase is involved in the intermolecular homodimeric formation and enzymatic activity. In the present study, we provide a new methodology to find histidine-methylated proteins in vivo and suggest an insight into the importance of histidine methylation.


Asunto(s)
Histidina , Metilhistidinas , Ratones , Animales , Metilhistidinas/análisis , Histidina/metabolismo , Lisina/metabolismo , Isoenzimas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Proteínas , Fosfopiruvato Hidratasa , Arginina , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...