Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146960

RESUMEN

The growth of two-dimensional (2D) van der Waals (vdW) magnetic materials presents attractive opportunities for exploring new physical phenomena and valuable applications. Among these materials, Fe3GeTe2(FGT) exhibits a variety of remarkable properties and has garnered significant attention. Herein, we have for the first time created a nanomesh structure-a honeycomb-like array of hexagonal nanopores-with the zigzag pore-edge atomic structure on thin FGT flakes with and without oxidation of the pore edges. It is revealed that the magnitude of ferromagnetism (FM) significantly increases in both samples compared with bulk flakes without nanomeshes. Critical temperature annealing results in the formation of zigzag pore edges and interpore zigzag-edge nanoribbons. We unveil that the non-oxide (O) termination of the Fe dangling bonds on these zigzag edges enhances FM behavior, while O-termination suppresses this FM by introducing antiferromagnetic behavior (AFM) through edge O-Fe coupling. FGT nanomeshes hold promise for the creation of strong FM and their effective application in magnetic and spintronic systems. .

2.
Fundam Res ; 4(3): 570-574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933200

RESUMEN

Single-walled carbon nanotubes (SWCNTs) present excellent electronic and mechanical properties desired in wearable and flexible devices. The preparation of SWCNT films is the first step for fabricating various devices. This work developed a scalable and feasible method to assemble SWCNT thin films on water surfaces based on Marangoni flow induced by surface tension gradient. The films possess a large area of 40 cm × 30 cm (extensible), a tunable thickness of 15∼150 nm, a high transparency of up to 96%, and a decent conductivity. They are ready to be directly transferred to various substrates, including flexible ones. Flexible strain sensors were fabricated with the films on flexible substrates. These sensors worked with high sensitivity and repeatability. By realizing multi-functional human motion sensing, including responding to voices, monitoring artery pulses, and detecting knuckle and muscle actions, the assembled SWCNT films demonstrated the potential for application in smart devices.

3.
Nat Commun ; 15(1): 4076, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744824

RESUMEN

Carbon nanotubes (CNTs), hollow cylinders of carbon, hold great promise for advanced technologies, provided their structure remains uniform throughout their length. Their growth takes place at high temperatures across a tube-catalyst interface. Structural defects formed during growth alter CNT properties. These defects are believed to form and heal at the tube-catalyst interface but an understanding of these mechanisms at the atomic-level is lacking. Here we present DeepCNT-22, a machine learning force field (MLFF) to drive molecular dynamics simulations through which we unveil the mechanisms of CNT formation, from nucleation to growth including defect formation and healing. We find the tube-catalyst interface to be highly dynamic, with large fluctuations in the chiral structure of the CNT-edge. This does not support continuous spiral growth as a general mechanism, instead, at these growth conditions, the growing tube edge exhibits significant configurational entropy. We demonstrate that defects form stochastically at the tube-catalyst interface, but under low growth rates and high temperatures, these heal before becoming incorporated in the tube wall, allowing CNTs to grow defect-free to seemingly unlimited lengths. These insights, not readily available through experiments, demonstrate the remarkable power of MLFF-driven simulations and fill long-standing gaps in our understanding of CNT growth mechanisms.

4.
ACS Nano ; 18(14): 9917-9928, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38548470

RESUMEN

Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.

5.
Adv Mater ; 36(19): e2311339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38324142

RESUMEN

SrTiO3 (STO) substrate, a perovskite oxide material known for its high dielectric constant (ɛ), facilitates the observation of various (high-temperature) quantum phenomena. A quantum Hall topological insulating (QHTI) state, comprising two copies of QH states with antiparallel two ferromagnetic edge-spin overlap protected by the U(1) axial rotation symmetry of spin polarization, has recently been achieved in low magnetic field (B) even as high as ≈100 K in a monolayer graphene/thin hexagonal boron nitride (hBN) spacer placed on an STO substrate, thanks to the high ɛ of STO. Despite the use of the heavy STO substrate, however, proximity-induced quantum spin Hall (QSH) states in 2D TI phases, featuring a topologically protected helical edge spin phase within time-reversal-symmetry, is not confirmed. Here, with the use of a monolayer hBN spacer, it is revealed the coexistence of QSH (at B = 0T) and QHTI (at B ≠ 0) states in the same single graphene sample placed on an STO, with a crossover regime between the two at low B. It is also classified that the different symmetries of the two nontrivial helical edge spin phases in the two states lead to different interaction with electron-puddle quantum dots, caused by a local surface pocket of the STO, in the crossover regime, resulting in a spin dephasing only for the QHTI state. The results obtained using STO substrates open the doors to investigations of novel QH spin states with different symmetries and their correlations with quantum phenomena. This exploration holds value for potential applications in spintronic devices.

6.
ACS Nano ; 18(1): 355-363, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38134351

RESUMEN

An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K+ versus Cl- compared to pristine SWCNTs of the same 2.2 nm diameter, while hydrodynamic slip lengths decreased by more than an order of magnitude. These results suggest that the single-layer graphene inner surface may be translucent to charge-regulation and hydrodynamic-slip effects arising from h-BN on the outside of the SWCNT. Such 1D heterostructures could serve as synthetic platforms with tunable properties for exploring distinct nanofluidic phenomena and their potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA