Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 34(16): 2274-2290, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37410591

RESUMEN

Doxycycline hyclate (DOXY) is a tetracycline derivative known as the broad-spectrum bacteriostatic drug. DOXY has been suggested as the first-line antibiotic for diabetic foot ulcers (DFU). Unfortunately, the long-term availability of DOXY in both oral and conventional topical dosage forms reduces its therapeutic effectiveness, which is closely linked to gastrointestinal side effects and acute pain during therapy, as well as uncontrolled DOXY release at the wound site. To address these shortcomings, we present for the first time a DOXY hydrogel system (DHs) built on crosslinks between carboxymethyl chitosan (CMC) and aldehyde hyaluronic acid (AHA). Three formulations of DHs were developed with different ratios of CMC and AHA, consisting of F1 (3:7, w/w), F2 (5:5, w/w), and F3 (7:3, w/w). Viscosity, rheology, gel strength, pH, swelling, gel fraction, wettability, stability, in vitro drug release, ex vivo antibacterial, and dermatokinetic studies were used to evaluate the DHs. According to the in vitro release study, up to 85% of DOXY was released from DHs via the Fickian diffusion mechanism in the Korsmeyer-Peppas model (n < 0.45), which provides controlled drug delivery. Because of its excellent physicochemical characteristics, F2 was chosen as the best DHs formulation in this study. Essentially, the optimum DHs formulation could greatly improve DOXY's ex vivo dermatokinetic profile while also providing excellent antibacterial activity. As a consequence, this study had promising outcome as a proof of concept for increasing the efficacy of DOXY in clinical therapy. Further extensive in vivo studies are required to evaluate the efficacy of this approach.


Asunto(s)
Quitosano , Doxiciclina , Doxiciclina/farmacología , Ácido Hialurónico , Hidrogeles , Antibacterianos/farmacología
2.
Antibiotics (Basel) ; 12(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237725

RESUMEN

Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.

3.
Int J Biol Macromol ; 237: 124084, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940768

RESUMEN

Safflower (Carthamus tinctorius L.) has been explored as a source of natural antioxidant. However, quercetin 7-O-beta-D-glucopyranoside and luteolin 7-O-beta-D-glucopyranoside, as its bioactive compounds, possessed poor aqueous solubility, limiting its efficacy. Here, we developed solid lipid nanoparticles (SLNs) decorated with hydroxypropyl beta-cyclodextrin (HPßCD) incorporated into dry floating gel in situ systems to control the release of both compounds. Using Geleol® as a lipid matrix, SLNs were <200 nm in size with >80 % of encapsulation efficiency. Importantly, following the decoration using HPßCD, the stability of SLNs in gastric environment was significantly improved. Furthermore, the solubility of both compounds was also enhanced. The incorporation of SLNs into gellan gum-based floating gel in situ provided desired flow and floating properties, with <30 s gelation time. The floating gel in situ system could control the release of bioactive compounds in FaSSGF (Fasted-State Simulated Gastric Fluid). Furthermore, to assess the effect of food intake on release behavior, we found that the formulation could show a sustained release pattern in FeSSGF (Fed-State Simulated Gastric Fluid) for 24 h after being released in FaSGGF for 2 h. This indicated that this combination approach could be a promising oral delivery for bioactive compounds in safflower.


Asunto(s)
Carthamus tinctorius , Nanopartículas , Preparaciones de Acción Retardada , 2-Hidroxipropil-beta-Ciclodextrina , Prueba de Estudio Conceptual , Portadores de Fármacos , Tamaño de la Partícula
4.
ACS Appl Mater Interfaces ; 14(51): 56560-56577, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516276

RESUMEN

One of the biggest challenges in infectious disease treatment is the existence of bacterial infections in underskin wound tissue, such as cellulitis. Compared to other treatments, it is harder for antibacterial drugs to penetrate the physical barrier on the affected skin with a nonspecific target, making conventional therapy for cellulitis infection more difficult and considered. In this novel research, we pioneer a combined strategy of dissolving microneedles (MNs) and bacteria-sensitive microparticles (MPs) for enhanced penetration and targeted delivery of chloramphenicol (CHL) to the infection site specifically. The polycaprolactone polymer was used to make MPs because of its sensitivity to bacterial enzyme stimuli. The best microparticle formulation was discovered and optimized using the Design-Expert application. Furthermore, this study evaluated the antibacterial activity of MPs in vitro and in vivo on the mutant Drosophila larval infection model. This strategy shows improvement in the antibacterial activity of MPs and higher retention duration compared to conventional cream formulation, and the inclusion of these MPs into dissolving MNs was able to greatly improve the dermatokinetic characteristics of CHL in ex vivo evaluation. Importantly, the antimicrobial efficacy in an ex vivo infection model demonstrated that, following the use of this strategy, bacterial bioburdens decreased by up to 99.99% after 24 h. The findings offered a proof of concept for the enhancement of CHL dermatokinetic profiles and antimicrobial activities after its preparation into bacteria-sensitive MPs and distribution by MNs. Future research should investigate in vivo effectiveness in an appropriate animal model.


Asunto(s)
Antiinfecciosos , Celulitis (Flemón) , Animales , Administración Cutánea , Cloranfenicol/farmacología , Piel , Antibacterianos/farmacología , Agujas , Sistemas de Liberación de Medicamentos
5.
Biomater Adv ; 143: 213175, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36368057

RESUMEN

Skin wounds have been reported to increase the number of microbial colonies susceptible to infection. Treatments using oral antibiotics have been limited due to their toxicity and hydrophobic characteristics. In this study, we developed a formulation of chloramphenicol microparticles (CPL MPs), which was modified into chitosan hydrogel to increase treatment efficiency in targeting infections and creating an optimal environment to support the healing process. CPL MPs were prepared by a cross-linker stabilized method using whey protein (WPI) biopolymer, and the CPL MPs hydrogel was designed using chitosan biopolymer. Based on the result, CPL-loaded MPs showed desired physical and encapsulation characteristics. In the in vitro study, drug release of CPL MPs in simulated wound fluid represented approximately 99.40 ± 7.01 % of the system after 24 h. The antibacterial activity of CPL-loaded MPs formulation (MIC value 12.5 µg/mL, MBC 25 µg/mL) was effective as MIC concentration increased. Furthermore, the formulation of CPL MPs into hydrogel showed a better dermatokinetic profile compared to hydrogel with pure CPL. Interestingly, the antibacterial activity of the ex vivo infection model showed that Staphylococcus aureus activity decreased by up to 99.98 % after 24 h administration of CPL MPs hydrogel when compared to pure-CPL hydrogel and blank hydrogel. These studies have confirmed that incorporating CPL MPs into hydrogel can provide a promising approach to skin infection treatment.


Asunto(s)
Quitosano , Quitosano/química , Hidrogeles/química , Vendajes , Antibacterianos/farmacología , Cloranfenicol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...