Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11316, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760481

RESUMEN

The Greenland Ice Sheet is losing mass at increasing rates. Substantial amounts of this mass loss occur by ice discharge which is influenced by ocean thermal forcing. The ice sheet is surrounded by thousands of peripheral, dynamically decoupled glaciers. The mass loss from these glaciers is disproportionately high considering their negligible share in Greenland' overall ice mass. We study the relevance of ocean thermal forcing for ice discharge evolution in the context of this contrasting behaviour. Our estimate of ice discharge from the peripheral tidewater glaciers yields a rather stable Greenland-wide mean of 5.40 ± 3.54 Gt a-1 over 2000-2021. The evolutions of ice discharge and ocean thermal forcing are heterogeneous around Greenland. We observe a significant sector-wide increase of ice discharge in the East and a significant sector-wide decrease in the Northeast. Ocean thermal forcing shows significant increases along the northern/eastern coast, while otherwise unchanged conditions or decreases prevail. For East Greenland, this implies a clear influence of ocean thermal forcing on ice discharge. Similarly, we find clear influences at peripheral tidewater glaciers with thick termini that are similar to ice sheet outlet glaciers. At the peripheral glaciers in Northeast Greenland ice discharge evolution opposes ocean thermal forcing for unknown reasons.

2.
Nat Commun ; 15(1): 1416, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360958

RESUMEN

In recent sea level studies, discrepancies have arisen in ocean mass observations obtained from the Gravity Recovery and Climate Experiment and its successor, GRACE Follow-On, with GRACE estimates consistently appearing lower than density-corrected ocean volume observations since 2015. These disparities have raised concerns about potential systematic biases in sea-level observations, with significant implications for our understanding of this essential climate variable. Here, we reconstruct the global and regional ocean mass change through models of ice and water mass changes on land and find that it closely aligns with both GRACE and density-corrected ocean volume observations after implementing recent adjustments to the wet troposphere correction and halosteric sea level. While natural variability in terrestrial water storage is important on interannual timescales, we find that the net increase in ocean mass over 20 years can be almost entirely attributed to ice wastage and human management of water resources.

3.
Nature ; 593(7857): 74-82, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953415

RESUMEN

The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2-8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.

4.
Nature ; 563(7732): 551-554, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464265

RESUMEN

Global-mean sea-level rise (GMSLR) during the twentieth century was primarily caused by glacier and ice-sheet mass loss, thermal expansion of ocean water and changes in terrestrial water storage1. Whether based on observations2 or results of climate models3,4, however, the sum of estimates of each of these contributions tends to fall short of the observed GMSLR. Current estimates of the glacier contribution to GMSLR rely on the analysis of glacier inventory data, which are known to undersample the smallest glacier size classes5,6. Here we show that from 1901 to 2015, missing and disappeared glaciers produced a sea-level equivalent (SLE) of approximately 16.7 to 48.0 millimetres. Missing glaciers are those small glaciers that we expect to exist today, owing to regional analyses and theoretical scaling relationships, but that are not represented in the inventories. These glaciers contributed approximately 12.3 to 42.7 millimetres to the historical SLE. Additionally, disappeared glaciers (those that existed in 1901 but had melted away by 2015, and that therefore cannot be included in modern global glacier inventories) made an estimated contribution of between 4.4 and 5.3 millimetres. Failure to consider these uncharted glaciers may be an important cause of difficulties in closing the GMSLR budget during the twentieth century: their contribution is on average between 0.17 and 0.53 millimetres of SLE per year, compared to a budget discrepancy of about 0.5 millimetres of GMSLR per year between 1901 and 1990. Although the uncharted glaciers will have a minimal role in sea-level rise in the future, and are less important after 1990, these findings imply that undiscovered physical processes are not required to close the historical sea-level budget.

5.
Proc Natl Acad Sci U S A ; 113(10): 2597-602, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903648

RESUMEN

Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

6.
Geophys Res Lett ; 43(20): 10864-10872, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-28239204

RESUMEN

Long-term trends and decadal variability of sea level in the North Sea and along the Norwegian coast have been studied over the period 1958-2014. We model the spatially nonuniform sea level and solid earth response to large-scale ice melt and terrestrial water storage changes. GPS observations, corrected for the solid earth deformation, are used to estimate vertical land motion. We find a clear correlation between sea level in the North Sea and along the Norwegian coast and open ocean steric variability in the Bay of Biscay and west of Portugal, which is consistent with the presence of wind-driven coastally trapped waves. The observed nodal cycle is consistent with tidal equilibrium. We are able to explain the observed sea level trend over the period 1958-2014 well within the standard error of the sum of all contributing processes, as well as the large majority of the observed decadal sea level variability.

7.
Science ; 345(6199): 919-21, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25123485

RESUMEN

The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%.


Asunto(s)
Cambio Climático , Actividades Humanas , Cubierta de Hielo , Océanos y Mares , Clima , Congelación , Humanos
8.
Proc Natl Acad Sci U S A ; 111(9): 3292-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24596428

RESUMEN

Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.


Asunto(s)
Cambio Climático , Inundaciones/economía , Modelos Económicos , Dinámica Poblacional , Simulación por Computador , Inundaciones/estadística & datos numéricos , Predicción , Geografía , Humanos , Océanos y Mares , Medición de Riesgo , Factores Socioeconómicos , Incertidumbre
9.
Proc Natl Acad Sci U S A ; 110(38): 15216-21, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003138

RESUMEN

Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.


Asunto(s)
Carbono/análisis , Clima Frío , Cubierta de Hielo/química , Industrias/historia , Nieve/química , Altitud , Simulación por Computador , Europa (Continente) , Historia del Siglo XIX , Historia del Siglo XX
10.
Proc Natl Acad Sci U S A ; 110(34): 13745-50, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23858443

RESUMEN

Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Modelos Teóricos , Regiones Antárticas , Simulación por Computador , Groenlandia , Océanos y Mares , Agua de Mar/química , Temperatura
11.
Clim Dyn ; 39(7-8): 1969-1980, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-26074672

RESUMEN

It is well known from previous research that significant differences exist amongst reanalysis products from different institutions. Here, we compare the skill of NCEP-R (reanalyses by the National Centers for Environmental Prediction, NCEP), ERA-int (the European Centre of Medium-range Weather Forecasts Interim), JCDAS (the Japanese Meteorological Agency Climate Data Assimilation System reanalyses), MERRA (the Modern Era Retrospective-Analysis for Research and Applications by the National Aeronautics and Space Administration), CFSR (the Climate Forecast System Reanalysis by the NCEP), and ensembles thereof as predictors for daily air temperature on a high-altitude glaciated mountain site in Peru. We employ a skill estimation method especially suited for short-term, high-resolution time series. First, the predictors are preprocessed using simple linear regression models calibrated individually for each calendar month. Then, cross-validation under consideration of persistence in the time series is performed. This way, the skill of the reanalyses with focus on intra-seasonal and inter-annual variability is quantified. The most important findings are: (1) ERA-int, CFSR, and MERRA show considerably higher skill than NCEP-R and JCDAS; (2) differences in skill appear especially during dry and intermediate seasons in the Cordillera Blanca; (3) the optimum horizontal scales largely vary between the different reanalyses, and horizontal grid resolutions of the reanalyses are poor indicators of this optimum scale; and (4) using reanalysis ensembles efficiently improves the performance of individual reanalyses.

12.
Proc Natl Acad Sci U S A ; 107(47): 20223-7, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059938

RESUMEN

Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Modelos Teóricos , Ríos , Abastecimiento de Agua , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...