Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667780

RESUMEN

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Asunto(s)
Antioxidantes , Colágeno , Paracentrotus , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Colágeno/química , Paracentrotus/química , Naftoquinonas/química , Naftoquinonas/aislamiento & purificación , Erizos de Mar/química , Residuos , Materiales Biocompatibles/química , Alimento Perdido y Desperdiciado
2.
Gels ; 9(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888406

RESUMEN

In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics.

3.
Mar Drugs ; 21(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37888441

RESUMEN

The mutable collagenous tissue (MCT) of echinoderms possesses biological peculiarities that facilitate native collagen extraction and employment for biomedical applications such as regenerative purposes for the treatment of skin wounds. Strategies for skin regeneration have been developed and dermal substitutes have been used to cover the lesion to facilitate cell proliferation, although very little is known about the application of novel matrix obtained from marine collagen. From food waste we isolated eco-friendly collagen, naturally enriched with glycosaminoglycans, to produce an innovative marine-derived biomaterial assembled as a novel bi-layered skin substitute (Marine Collagen Dermal Template or MCDT). The present work carried out a preliminary experimental in vivo comparative analysis between the MCDT and Integra, one of the most widely used dermal templates for wound management, in a rat model of full-thickness skin wounds. Clinical, histological, and molecular evaluations showed that the MCDT might be a valuable tool in promoting and supporting skin wound healing: it is biocompatible, as no adverse reactions were observed, along with stimulating angiogenesis and the deposition of mature collagen. Therefore, the two dermal templates used in this study displayed similar biocompatibility and outcome with focus on full-thickness skin wounds, although a peculiar cellular behavior involving the angiogenesis process was observed for the MCDT.


Asunto(s)
Eliminación de Residuos , Piel Artificial , Animales , Ratas , Alimentos , Cicatrización de Heridas , Piel , Colágeno/farmacología , Equinodermos
4.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760033

RESUMEN

Coping with a zero-waste, more sustainable economy represents the biggest challenge for food market nowadays. We have previously demonstrated that by applying smart multidisciplinary waste management strategies to purple sea urchin (Paracentrotus lividus) food waste, it is possible to obtain both a high biocompatible collagen to produce novel skin substitutes and potent antioxidant pigments, namely polyhydroxynapthoquinones (PHNQs). Herein, we have analyzed the biological activities of the PHNQs extract, composed of Spinochrome A and B, on human skin fibroblast cells to explore their future applicability in the treatment of non-healing skin wounds with the objective of overcoming the excessive oxidative stress that hinders wound tissue regeneration. Our results clearly demonstrate that the antioxidant activity of PHNQs is not restricted to their ability to scavenge reactive oxygen species; rather, it can be traced back to an upregulating effect on the expression of superoxide dismutase 1, one of the major components of the endogenous antioxidant enzymes defense system. In addition, the PHNQs extract, in combination with Antimycin A, displayed a synergistic pro-apoptotic effect, envisaging its possible employment against chemoresistance in cancer treatments. Overall, this study highlights the validity of a zero-waste approach in the seafood chain to obtain high-value products, which, in turn, may be exploited for different biomedical applications.

5.
Antioxidants (Basel) ; 12(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36671006

RESUMEN

For improving the management of the production chain of PGI Mantua pears (which comprises many varieties, including Abate Fetel), applying the cardinal principles of circular economy and sustainability, the fruits with diseases or defects were recovered for producing dried rounds of pears from the Abate Fetel cultivar, a new product with high nutritional value that extends the remaining life. This process led to the production of secondary and residual by-products, which are mainly composed of the highest and lowest part of the fruits, comprising seeds, pulps, peels and petioles. Hence, this study was focused on the valorization of these secondary by-products of Abate Fetel pears through the production of pear extracts using traditional and "green" extraction methods that involve the use of supercritical CO2 fluid extraction. The produced extracts, together with a reference solvent-derived extract, were analyzed by HPLC-ESI-MS, and in parallel, their direct and cellular antioxidant activity were assessed. Evidence has indicated that all the tested extracts reduced the H2O2-induced reactive oxygen species (ROS), lipid peroxidation and nitric oxide (NO) levels, respectively, in human intestinal Caco-2 cells. Hence, this study clearly suggests that extracts obtained from Mantuan PGI pear by-products may be used as valuable sources of bioactive upcycled phytocomplex for the development of dietary supplements and/or functional foods.

6.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296595

RESUMEN

The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.


Asunto(s)
Antineoplásicos , Curcumina , Nanopartículas , Humanos , Curcumina/química , Línea Celular Tumoral , Nanopartículas/química , Polímeros/química , Antineoplásicos/química , Agua , Tamaño de la Partícula , Portadores de Fármacos/química
7.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897957

RESUMEN

The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective "green" methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cucurbita , Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico/métodos , Aceites de Plantas/química , Semillas/química
8.
Front Nutr ; 8: 730747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589514

RESUMEN

Commonly known as "purple sea urchin," Paracentrotus lividus occurs in the Mediterranean Sea and the eastern Atlantic Ocean. This species is a highly appreciated food resource and Italy is the main consumer among the European countries. Gonads are the edible part of the animal but they represent only a small fraction (10-30%) of the entire sea urchin mass, therefore, the majority ends up as waste. Recently, an innovative methodology was successfully developed to obtain high-value collagen from sea urchin by-products to be used for tissue engineering. However, tissues used for the collagen extraction are still a small portion of the sea urchin waste (<20%) and the remaining part, mainly the carbonate-rich test and spines, are discarded. Residual cell tissues, tests, and spines contain polyunsaturated fatty acids, carotenoids, and a class of small polyphenols, called polyhydroxynaphthoquinones (PHNQ). PHNQ, due to their polyhydroxylated quinonoid nature, show remarkable pharmacologic effects, and have high economic significance and widespread application in several cosmetic and pharmaceuticals applications. A green extraction strategy aimed to obtain compounds of interest from the wastes of sea urchins was developed. The core strategy was the supercritical CO2 technique, characterized by low environmental impacts. Fatty acids and carotenoids were successfully and selectively extracted and identified depending on the physical parameters of the supercritical CO2 extraction. Finally, the exhausted powder was extracted by solvent-based procedures to yield PHNQ. The presence of Spinochrome A and Spinochrome B was confirmed and extracts were characterized by a remarkably high antioxidant activity, measured through the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. Overall, the selective and successive extraction methods were validated for the valorization of waste from sea urchins, demonstrating the feasibility of the techniques targeting added-value compounds.

9.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467593

RESUMEN

Among bioactive phytochemicals, ellagic acid (EA) is one of the most controversial because its high antioxidant and cancer-preventing effects are strongly inhibited by low gastrointestinal absorption and rapid excretion. Strategies toward an increase of solubility in water and bioavailability, while preserving its structural integrity and warranting its controlled release at the physiological targets, are therefore largely pursued. In this work, EA lysine salt at 1:4 molar ratio (EALYS), exhibiting a more than 400 times increase of water solubility with respect to literature reports, was incorporated at 10% in low methoxylated (LM) and high methoxylated (HM) pectin films. The release of EA in PBS at pH 7.4 from both film preparations was comparable and reached 15% of the loaded compound over 2 h. Under simulated gastric conditions, release of EA from HM and LM pectin films was minimal at gastric pH, whereas higher concentrations-up to 300 µM, corresponding to ca. 50% of the overall content-were obtained in the case of the HM pectin film after 2 h incubation at the slightly alkaline pH of small intestine environment, with the enzyme and bile salt components enhancing the release. EALYS pectin films showed a good prebiotic activity as evaluated by determination of short chain fatty acids (SCFAs) levels following microbial fermentation, with a low but significant increase of the effects produced by the pectins themselves. Overall, these results highlight pectin films loaded with EALYS salt as a promising formulation to improve administration and controlled release of the compound.


Asunto(s)
Preparaciones de Acción Retardada/química , Ácido Elágico/administración & dosificación , Ácido Elágico/química , Pectinas/química , Disponibilidad Biológica , Composición de Medicamentos/métodos , Heces/microbiología , Fermentación , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Hidroxilación , Absorción Intestinal/efectos de los fármacos , Pectinas/clasificación , Solubilidad
10.
Food Chem ; 348: 129152, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33515953

RESUMEN

A red pigment was prepared by reaction of chlorogenic acid (CGA) with tryptophan (TRP) in air at pH 9 (37% w/w yield) and evaluated as food dye. The main component of pigment was formulated as an unusual benzochromeno[2,3-b]indole linked to a TRP unit, featuring a cyanine type chromophore (λmax 542, 546 nm, 1% extinction coefficient of the sodium salt = 244 ± 2). The chromophore showed a minimal pH dependence and proved stable for at least 3 h at 90 °C, both at pH 3.6 or 7.0, whereas red wine anthocyanins showed a substantial (30%) and betanin a complete abatement after 1 h at the acidic pHs. An intense coloring of different food matrices was obtained with the pigment at 0.01 % w/w. No toxicity was observed up to 0.2 mg/mL on hepatic and colonic cell lines. These data make this dye a promising alternative for red coloring of food.


Asunto(s)
Antocianinas/química , Ácido Clorogénico/química , Colorantes de Alimentos/química , Triptófano/química , Antocianinas/farmacología , Betacianinas/química , Betacianinas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colorantes de Alimentos/farmacología , Calor , Humanos , Concentración de Iones de Hidrógeno , Acoplamiento Oxidativo
11.
Front Nutr ; 7: 60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457916

RESUMEN

Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.

12.
Molecules ; 24(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31614997

RESUMEN

Fermentation in solid state culture (SSC) has been the focus of increasing interest because of its potential for industrial applications. In previous studies SSC of pomegranate wastes by Aspergillus niger has been extensively developed and optimized for the recovery of ellagic acid (EA), a high value bioactive. In this study we comparatively investigated the SSC of powdered pomegranate husks by A. niger and Saccharomyces cerevisiae and evaluated the recovery yields of EA by an ultrasound and microwave-assisted 7:3 water/ethanol extraction. Surprisingly enough, the yields obtained by S. cerevisiae fermentation (4% w/w) were found 5-fold higher than those of the A. niger fermented material, with a 10-fold increase with respect to the unfermented material. The EA origin was traced by HPLC analysis that showed a significant decrease in the levels of punicalagin isomers and granatin B and formation of punicalin following fermentation. Other extraction conditions that could warrant a complete solubilization of EA were evaluated. Using a 1:100 solid to solvent ratio and DMSO as the solvent, EA was obtained in 4% yields from S. cerevisiae fermented husks at a high purity degree. Hydrolytic treatment of S. cerevisiae fermented pomegranate husks afforded a material freed of the polysaccharides components that gave recovery yields of EA up to 12% w/w.


Asunto(s)
Ácido Elágico/química , Frutas/química , Granada (Fruta)/química , Residuos Sólidos , Aspergillus niger/química , Aspergillus niger/metabolismo , Ácido Elágico/aislamiento & purificación , Etanol/química , Fermentación , Hidrólisis , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
13.
Bioresour Technol ; 277: 117-127, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30660962

RESUMEN

The aim of this work were to study terracotta-based porous air-water separators (4 mm thickness) in microbial recycling cells (MRCs) fed with cow manure (CM), swine manure (SM) and dairy wastewater (DW). Over 125 days, besides the removal of 60-90% of soluble-COD, considerable fractions of the main macronutrients (C, N, P, K, Fe, Mn, Ca, Mg) were removed from the wastewater and deposited on the terracotta separators as both inorganic salts and biomass deposits. Water evaporation at air-water interface as well as the high cathodic pH (10-12), induced by oxygen reduction to OH-, were the predominant factors leading to precipitation. The separators were saturated of up to 10 g per kg of terracotta of the main macronutrients, with negligible concentrations of the main inorganic contaminants. These materials could be directly reused as nutrients-enriched solid conditioners for agricultural soils.


Asunto(s)
Nutrientes , Aguas Residuales/química , Animales , Biomasa , Bovinos , Electrodos , Estiércol , Reciclaje , Porcinos
14.
Molecules ; 24(1)2018 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-30583586

RESUMEN

Over the past decade, green chemistry has been emphasizing the importance of protecting the environment and human health in an economically beneficial manner aiming at avoiding toxins and reducing wastes. The field of metallic materials degradation, generally faced by using toxic compounds, found a fertile research field in green chemistry. In fact, the use of inhibitors is a well-known strategy when metal corrosion needs to be prevented, controlled, or retarded. Green inhibitors are biodegradable, ecologically acceptable and renewable. Their valorization expands possible applications in industrial fields other than 'waste to energy' in the perspective of circular economy. Although lot of experimental work has been done and many research papers have been published, the topic of green inhibitors is still an open issue. The great interest in the field expanded the research, resulting in high numbers of tested molecules. However, the most frequently adopted approaches are conventional and, hence, not suitable to fully characterize the potential efficacy of inhibitors. All the mentioned aspects are the object of the present review and are meant as a constructive criticism to highlight the weak points of the green inhibitors field as to re-evaluate the literature and address the future research in the field that still lacks rationalization.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Biomasa , Corrosión , Residuos , Economía , Tecnología Química Verde , Residuos/análisis
15.
Bioelectrochemistry ; 120: 18-26, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29149665

RESUMEN

Recently, terracotta has attracted interest as low-cost and biocompatible material to build separators in microbial fuel cells (MFCs). However, the influence of a non-conductive material like terracotta on electroactive microbiological communities remains substantially unexplored. This study aims at describing the microbial pools developed from two different seed inocula (bovine and swine sewage) in terracotta-based air-breathing MFC. A statistical approach on microbiological data confirmed different community enrichment in the MFCs, depending mainly on the inoculum. Terracotta separators impeded the growth of electroactive communities in contact with cathodes (biocathodes), while a thick biofilm was observed on the surface (anolyte-side) of the terracotta separator. Terracotta-free MFCs, set as control experiments, showed a well-developed biocathode, Biocathode-MFCs resulted in 4 to 6-fold higher power densities. All biofilms were analyzed by high-throughput Illumina sequencing applied to 16S rRNA gene. The results showed more abundant (3- to 5-fold) electroactive genera (mainly Geobacter, Pseudomonas, Desulfuromonas and Clostridia MBA03) in terracotta-free biocathodes. Nevertheless, terracotta separators induced only slight changes in anodic microbial communities.


Asunto(s)
Bacterias/aislamiento & purificación , Fuentes de Energía Bioeléctrica/microbiología , Animales , Bacterias/genética , Bovinos , Electricidad , Electrodos , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología , Porcinos
16.
Bioresour Technol ; 237: 240-248, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28341382

RESUMEN

Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fotosíntesis , Aguas Residuales , Animales , Electrodos , Oxígeno , Porcinos
17.
Materials (Basel) ; 9(2)2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28787914

RESUMEN

The introduction of N-containing functionalities in carbon-based materials is brought to stable and highly active metal-supported catalysts. However, up to now, the role of the amount and the nature of N-groups have not been completely clear. This study aims to clarify these aspects by preparing tailored N-containing carbons where different N-groups are introduced during the synthesis of the carbon material. These materials were used as the support for Pd nanoparticles. Testing these catalysts in alcohol oxidations and comparing the results with those obtained using Pd nanoparticles supported on different N-containing supports allowed us to obtain insight into the role of the different N-containing groups. In the cinnamyl alcohol oxidation, pyridine-like groups seem to favor both activity and selectivity toward cinnamaldehyde.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...