Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 45(2): 359-379, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34676511

RESUMEN

The aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (Igeo) indices remained ≤ 2, indicating only moderate contamination. Selenium showed moderate to heavy contamination levels (Igeo up to 4.7) in all sampling locations, and Sb was highly elevated (Igeo = 7.1; extreme contamination) in one industrial location. Therefore, Se was the most important contributor to the pollution load followed by Sb and Cd. Both principle component analysis (of total content) and geochemical fractionation (by sequential extraction) suggested that V, Cr and Co are mostly of geogenic origin, while Se and Sb contents appear to be highly influenced by anthropogenic inputs. The most mobile and bioavailable element was Cd with a large non-residual fraction in all soils (76% of total Cd). The bio-concentration factors of Cd in leafy and fruiting plants were 50 times larger than other elements (except Mo) indicating preferential systematic plant uptake of Cd. Risk assessment models showed an overall low noncarcinogenic and carcinogenic risks to the population of Egypt due to the studied elements with only a few anomalies.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Suelo/química , Metales Pesados/análisis , Egipto , Cadmio/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo
2.
Environ Sci Technol ; 56(9): 5580-5589, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438975

RESUMEN

The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals. However, its application to study the lability of NOM-Cu required development of a robust separation and detection approach so that free Cu ions can be discriminated from (the also soluble) NOM-Cu. We developed a SID protocol (with enriched 65Cu) to quantify the labile pool of NOM-Cu using size exclusion chromatography coupled to a UV detector (for the identification of different NOM molecular weights) and ICP-MS (for 65Cu/63Cu ratio measurement). The Cu isotopic-exchange technique was first characterized and verified using standard NOM (SR-NOM) before applying the developed technique to an "organic-rich" podzol soil extract. The developed protocol indicated that, in contrast to the common knowledge, significant proportions of SR-NOM-Cu (25%) and soil organic-Cu (55%) were not labile, i.e., permanently locked into inaccessible organic structures. These findings need to be considered in defining Cu interactions with the reactive pool of NOM using geochemical models and risk evaluation protocols in which complexed Cu has always been implicitly assumed to be fully labile and exchangeable with free Cu ions.


Asunto(s)
Contaminantes del Suelo , Humanos , Cobre/química , Isótopos , Metales/análisis , Suelo/química , Contaminantes del Suelo/análisis
3.
J Environ Qual ; 46(6): 1198-1205, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29293823

RESUMEN

With the growing availability and use of copper-based nanomaterials (Cu-NMs), there is increasing concern regarding their release and potential impact on the environment. In this study, the short-term (≤5 d) aging profile and the long-term (135 d) speciation of dissolved Cu, copper oxide, and copper sulfide nanoparticles (CuO-NPs and CuS-NPs) were investigated in five different soils using X-ray absorption spectroscopy. Soil pH was found to strongly influence the short-term chemistry of the Cu-NMs added at 100 mg kg above background. Low pH soils promoted rapid dissolution of CuO-NPs that effectively aligned their behavior to that of dissolved Cu within 3 d. In higher pH soils, CuO-NPs persisted longer due to slower dissolution in the soil and resulted in contrasting short-term speciation compared with dissolved Cu, which formed copper hydroxides and carbonates that were reflective of the soil chemistry. Organic matter appeared to slow the dissolution process, but in the long term, the speciation of Cu added as dissolved Cu, CuO-NPs, and CuS-NPs were found to be same for each soil. The results imply that, in the short term, Cu-NMs may exhibit unique behavior in alkaline soils compared with their conventional forms (e.g., in the event of an adverse leaching event), but in the long term (≥135 d), their fates are dictated by the soil properties, are independent of the initial Cu form, and are likely to present minimal risk of nanospecific Cu-NM impact in the soil environment for the concentration studied here.


Asunto(s)
Cobre/química , Nanopartículas/química , Cinética , Suelo
4.
Biomaterials ; 74: 217-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466356

RESUMEN

Advanced biosensors in future medicine hinge on the evolvement of biomaterials. Porous silicon (pSi), a generally biodegradable and biocompatible material that can be fabricated to include environment-responsive optical characteristics, is an excellent candidate for in vivo biosensors. However, the feasibility of using this material as a subcutaneously implanted optical biosensor has never been demonstrated. Here, we investigated the stability and biocompatibility of a thermally-hydrocarbonised (THC) pSi optical rugate filter, and demonstrated its optical functionality in vitro and in vivo. We first compared pSi films with different surface chemistries and observed that the material was cytotoxic despite the outstanding stability of the THC pSi films. We then showed that the cytotoxicity correlates with reactive oxygen species levels, which could be mitigated by pre-incubation of THC pSi (PITHC pSi). PITHC pSi facilitates normal cellular phenotypes and is biocompatible in vivo. Importantly, the material also possesses optical properties capable of responding to microenvironmental changes that are readable non-invasively in cell culture and subcutaneous settings. Collectively, we demonstrate, for the first time, that PITHC pSi rugate filters are both biocompatible and optically functional for lab-on-a-chip and subcutaneous biosensing scenarios. We believe that this study will deepen our understanding of cell-pSi interactions and foster the development of implantable biosensors.


Asunto(s)
Técnicas Biosensibles , Hidrocarburos/química , Silicio/química , Piel , Células 3T3 , Animales , Ratones , Microscopía Electrónica de Rastreo , Porosidad
5.
Nanotoxicology ; 10(4): 385-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26472210

RESUMEN

Here, we evaluate the extent of sorption of silver nanoparticles (AgNPs) with different primary sizes (30 and 70 nm) and surface properties (branched polyethylene imine, "bPEI" and citrate coating) to laboratory plastic during (eco)toxicological testing. Under conditions of algal growth inhibition assay, up to 97% of the added AgNPs were sorbed onto the test vessels whereas under conditions of in vitro toxicological assay with mammalian cells, the maximum loss of AgNPs was 15%. We propose that the high concentration of proteins and biomolecules in the in vitro toxicological assay originating from serum-containing cell culture medium prevented NP sorption due to steric stabilisation. The sorption of AgNPs to test vessels was clearly concentration dependent. In the conditions of algal growth inhibition assay at 10 ng AgNPs/mL, up to 97% of AgNPs were lost from the test while at higher concentrations (1000 ng AgNPs/mL), the loss of AgNPs was remarkably smaller, up to 64%. Sorption of positively charged bPEI-coated AgNPs was more extensive than the sorption of negatively charged citrate-coated AgNPs and, when calculated on a mass basis, more 70 nm-sized Ag than 30 nm Ag sorbed to plastic surfaces. In summary, this study demonstrates that the loss of AgNPs during (eco)toxicological tests due to sorption on test vessel surfaces is significant, especially in diluted media (e.g. in algal growth medium) and at low NP concentrations. Thus, to ensure the accurate interpretation of (eco)toxicological results, the loss of AgNPs due to adsorption to test vessels should not be overlooked and considered for each specific case.


Asunto(s)
Absorción Fisicoquímica , Artefactos , Bioensayo/métodos , Ecotoxicología/métodos , Nanopartículas del Metal/química , Plásticos/química , Plata/química , Pruebas de Toxicidad/métodos , Ácido Cítrico/química , Iminas/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Polietilenos/química , Plata/toxicidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...