Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163682

RESUMEN

A lack of primary stability and osteointegration in metallic implants may result in implant loosening and failure. Adding porosity to metallic implants reduces the stress shielding effect and improves implant performance, allowing the surrounding bone tissue to grow into the scaffold. However, a bioactive surface is needed to stimulate implant osteointegration and improve mechanical stability. In this study, porous titanium implants were produced via powder sintering to create different porous diameters and open interconnectivity. Two strategies were used to generate a bioactive surface on the metallic foams: (1) an inorganic alkali thermochemical treatment, (2) grafting a cell adhesive tripeptide (RGD). RGD peptides exhibit an affinity for integrins expressed by osteoblasts, and have been reported to improve osteoblast adhesion, whereas the thermochemical treatment is known to improve titanium implant osseointegration upon implantation. Bioactivated scaffolds and control samples were implanted into the tibiae of rabbits to analyze the effect of these two strategies in vivo regarding bone tissue regeneration through interconnected porosity. Histomorphometric evaluation was performed at 4 and 12 weeks after implantation. Bone-to-implant contact (BIC) and bone in-growth and on-growth were evaluated in different regions of interest (ROIs) inside and outside the implant. The results of this study show that after a long-term postoperative period, the RGD-coated samples presented higher quantification values of quantified newly formed bone tissue in the implant's outer area. However, the total analyzed bone in-growth was observed to be slightly greater in the scaffolds treated with alkali thermochemical treatment. These results suggest that both strategies contribute to enhancing porous metallic implant stability and osteointegration, and a combination of both strategies might be worth pursuing.


Asunto(s)
Álcalis/farmacología , Materiales Biocompatibles Revestidos/farmacología , Metalurgia , Oligopéptidos/farmacología , Oseointegración , Temperatura , Andamios del Tejido/química , Titanio/farmacología , Animales , Femenino , Implantes Experimentales , Oseointegración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Porosidad , Polvos , Conejos
2.
Chembiochem ; 22(5): 839-844, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33094896

RESUMEN

Bacterial infections and incomplete biomaterial integration are major problems that can lead to the failure of medical implants. However, simultaneously addressing these two issues remains a challenge. Here, we present a chemical peptide library based on a multifunctional platform containing the antimicrobial peptide LF1-11 and the cell-adhesive motif RGD. The scaffolds were customized with catechol groups to ensure straightforward functionalization of the implant surface, and linkers of different length to assess the effect of peptide accessibility on the biological response. The peptidic platforms significantly improved the adhesion of mesenchymal stem cells and showed antimicrobial effects against Staphylococcus aureus. Of note is that peptides bearing spacers that were too long displayed the lowest efficiency. Subsequently, we designed a platform replacing linear RGD by cyclic RGD; this further enhanced eukaryotic cell adhesion while retaining excellent antimicrobial properties, thus being a suitable candidate for tissue engineering applications.


Asunto(s)
Antibacterianos/farmacología , Adhesión Celular , Células Madre Mesenquimatosas/fisiología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Staphylococcus aureus/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos
3.
Int J Mol Sci ; 19(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30200178

RESUMEN

In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Oseointegración/efectos de los fármacos , Osteoblastos/citología , Tibia/cirugía , Titanio/química , Adsorción , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Porosidad , Prótesis e Implantes , Conejos , Estrés Mecánico , Propiedades de Superficie , Temperatura
4.
Chemistry ; 16(18): 5385-90, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20358563

RESUMEN

Local energetic effects of amino acid replacements are often considered to have only a moderate influence on the backbone conformation of proteins or peptides. As these effects are difficult to determine experimentally, no comparison has yet been performed. However, knowledge of the influence of side chain mutations is essential in protein homology modeling and in optimizing biologically active peptide ligands in medicinal chemistry. Furthermore, the tool of N-methylation of peptides is of increasing importance for the design of peptidic drugs to gain oral availability or receptor selectivity. However, N-methylation is often accompanied by considerable population of cis-peptide bond structures, resulting in completely different conformations compared with the parent peptide. To retain a favored structure, it might be important to understand the effect of different side chains on the backbone conformation and to enable the introduction of an N-methylation at the right position without disturbing a biologically active conformation. In order to detect even small energetic effects due to side chain mutations, we employed a trick to investigate the structural equilibrium of a selected cyclic pentapeptide in which two conformations are equally populated. Very small energetic differences between both conformations could easily be determined experimentally by identifying shifts in the population of both isomers.


Asunto(s)
Oligopéptidos/química , Péptidos/química , Proteínas/química , Secuencia de Aminoácidos , Aminoácidos , Humanos , Ligandos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oligopéptidos/metabolismo , Péptidos/metabolismo , Conformación Proteica , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...