Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Plant Sci ; 8: 329, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337214

RESUMEN

Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to accumulation of aldehydes, ketones, and α,ß-unsaturated carbonyls of various lengths, known as oxylipins. Oxylipins with α,ß-unsaturated carbonyls are reactive electrophile species and are toxic. Cells have evolved several mechanisms to scavenge reactive electrophile oxylipins and decrease their reactivity such as by coupling with glutathione, or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously shown to reduce the reactive double bond of γ-ketols. In marked difference with its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase. Positioning of the α,ß-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE, far away from the NADP+ nicotinamide ring, provides a rational for the absence of activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution whereas other enzymes from the quinone oxidoreductase family are stable dimers and a structural explanation of this difference is proposed. A possible in vivo role of ketodienes and ketotrienes binding to ceQORH is also discussed.

2.
PLoS One ; 11(11): e0165139, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812132

RESUMEN

Mixed Lineage Leukemia 5 (MLL5) plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. Chromatin binding is ensured by its plant homeodomain (PHD) through a direct interaction with the N-terminus of histone H3 (H3). In addition, MLL5 contains a Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain, a protein module that usually displays histone lysine methyltransferase activity. We report here the crystal structure of the unliganded SET domain of human MLL5 at 2.1 Å resolution. Although it shows most of the canonical features of other SET domains, both the lack of key residues and the presence in the SET-I subdomain of an unusually large loop preclude the interaction of MLL5 SET with its cofactor and substrate. Accordingly, we show that MLL5 is devoid of any in vitro methyltransferase activity on full-length histones and histone H3 peptides. Hence, the three dimensional structure of MLL5 SET domain unveils the structural basis for its lack of methyltransferase activity and suggests a new regulatory mechanism.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos
3.
Phytochemistry ; 122: 45-55, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678323

RESUMEN

Under oxidative stress conditions the lipid constituents of cells can undergo oxidation whose frequent consequence is the production of highly reactive α,ß-unsaturated carbonyls. These molecules are toxic because they can add to biomolecules (such as proteins and nucleic acids) and several enzyme activities cooperate to eliminate these reactive electrophile species. CeQORH (chloroplast envelope Quinone Oxidoreductase Homolog, At4g13010) is associated with the inner membrane of the chloroplast envelope and imported into the organelle by an alternative import pathway. In the present study, we show that the recombinant ceQORH exhibits the activity of a NADPH-dependent α,ß-unsaturated oxoene reductase reducing the double bond of medium-chain (C⩾9) to long-chain (18 carbon atoms) reactive electrophile species deriving from poly-unsaturated fatty acid peroxides. The best substrates of ceQORH are 13-lipoxygenase-derived γ-ketols. γ-Ketols are spontaneously produced in the chloroplast from the unstable allene oxide formed in the biochemical pathway leading to 12-oxo-phytodienoic acid, a precursor of the defense hormone jasmonate. In chloroplasts, ceQORH could detoxify 13-lipoxygenase-derived γ-ketols at their production sites in the membranes. This finding opens new routes toward the understanding of γ-ketols role and detoxification.


Asunto(s)
Cloroplastos/metabolismo , Lípidos de la Membrana/metabolismo , Quinona Reductasas/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados , Lipooxigenasa/metabolismo , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Oxilipinas/metabolismo , Quinonas/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 455-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849509

RESUMEN

Quinone oxidoreductases reduce a broad range of quinones and are widely distributed among living organisms. The chloroplast envelope quinone oxidoreductase homologue (ceQORH) from Arabidopsis thaliana binds NADPH, lacks a classical N-terminal and cleavable chloroplast transit peptide, and is transported through the chloroplast envelope membrane by an unknown alternative pathway without cleavage of its internal chloroplast targeting sequence. To unravel the fold of this targeting sequence and its substrate specificity, ceQORH from A. thaliana was overexpressed in Escherichia coli, purified and crystallized. Crystals of apo ceQORH were obtained and a complete data set was collected at 2.34 Šresolution. The crystals belonged to space group C2221, with two molecules in the asymmetric unit.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cloroplastos/enzimología , NAD(P)H Deshidrogenasa (Quinona)/química , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cristalización , Datos de Secuencia Molecular , NAD(P)H Deshidrogenasa (Quinona)/genética , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...