Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
ACS Omega ; 9(14): 16759-16774, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617692

RESUMEN

Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.

2.
J Biomol Struct Dyn ; : 1-31, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385447

RESUMEN

A lysine-specific demethylase is an enzyme that selectively eliminates methyl groups from lysine residues. KDM5A, also known as JARID1A or RBP2, belongs to the KDM5 Jumonji histone demethylase subfamily. To identify novel molecules that interact with the LSD5A receptor, we created a quantitative structure-activity relationship (QSAR) model. A group of 435 compounds was used in a study of the quantitative relationship between structure and activity to guess the IC50 values for blocking LASD5A. We used a genetic algorithm-multilinear regression-based quantitative structure-activity connection model to forecast the bioactivity (PIC50) of 1615 food and drug administration pharmaceuticals from the zinc database with the goal of repurposing clinically used medications. We used molecular docking, molecular dynamic simulation modelling, and molecular mechanics generalised surface area analysis to investigate the molecule's binding mechanism. A genetic algorithm and multi-linear regression method were used to make six variable-based quantitative structure-activity relationship models that worked well (R2 = 0.8521, Q2LOO = 0.8438, and Q2LMO = 0.8414). ZINC000000538621 was found to be a new hit against LSD5A after a quantitative structure-activity relationship-based virtual screening of 1615 zinc food and drug administration compounds. The docking analysis revealed that the hit molecule 11 in the KDM5A binding pocket adopted a conformation similar to the pdb-6bh1 ligand (docking score: -8.61 kcal/mol). The results from molecular docking and the quantitative structure-activity relationship were complementary and consistent. The most active lead molecule 11, which has shown encouraging results, has good absorption, distribution, metabolism, and excretion (ADME) properties, and its toxicity has been shown to be minimal. In addition, the MTT assay of ZINC000000538621 with MCF-7 cell lines backs up the in silico studies. We used molecular mechanics generalise borne surface area analysis and a 200-ns molecular dynamics simulation to find structural motifs for KDM5A enzyme interactions. Thus, our strategy will likely expand food and drug administration molecule repurposing research to find better anticancer drugs and therapies.Communicated by Ramaswamy H. Sarma.

3.
Discov Nano ; 19(1): 35, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407670

RESUMEN

Biomaterials play a vital role in targeting therapeutics. Over the years, several biomaterials have gained wide attention in the treatment and diagnosis of diseases. Scientists are trying to make more personalized treatments for different diseases, as well as discovering novel single agents that can be used for prognosis, medication administration, and keeping track of how a treatment works. Theranostics based on nano-biomaterials have higher sensitivity and specificity for disease management than conventional techniques. This review provides a concise overview of various biomaterials, including carbon-based materials like fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers, and their involvement in theranostics of different diseases. In addition, the involvement of imaging techniques for theranostics applications was overviewed. Theranostics is an emerging strategy that has great potential for enhancing the accuracy and efficacy of medicinal interventions. Despite the presence of obstacles such as disease heterogeneity, toxicity, reproducibility, uniformity, upscaling production, and regulatory hurdles, the field of medical research and development has great promise due to its ability to provide patients with personalised care, facilitate early identification, and enable focused treatment.

4.
PLoS One ; 19(1): e0286848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38227609

RESUMEN

Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , SARS-CoV-2/metabolismo , Monoaminooxidasa/metabolismo , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología
5.
J Biomol Struct Dyn ; 42(5): 2211-2230, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37128759

RESUMEN

Cardiovascular diseases (CVD) such as heart failure, stroke, and hypertension affect 64.3 million people worldwide and are responsible for 30% of all deaths. Primary inhibition of the angiotensin-converting enzyme (ACE) is significant in the management of CVD. In the present study, the genetic algorithm-multiple linear regressions (GA-MLR) method is used to generate highly predictive and statistically significant (R2 = 0.70-0.75, Q2LOO=0.67-0.73, Q2LMO=0.66-0.72, CCCex=0.70-0.78) quantitative structure-activity relationships (QSAR) models conferring to OECD requirements using a dataset of 255 structurally diverse and experimentally validated ACE inhibitors. The models contain simply illustratable Padel, Estate, and PyDescriptors that correlate structural scaffold requisite for ACE inhibition. Also, constraint-based molecular docking reveals an interaction profile between ligands and enzymes which is then correlated with the essential structural features associated with the QSAR models. The QSAR-based virtual screening was utilized to find novel lead molecules from a designed database of 102 thiadiazole derivatives. The Applicability domain (AD), Molecular Docking, Molecular dynamics, and ADMET analysis suggest two compound D24 and D40 are inflexibly linked to the protein binding site and follows drug-likeness properties.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedades Cardiovasculares , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Simulación de Dinámica Molecular , Angiotensinas
6.
J Biomol Struct Dyn ; 42(5): 2550-2569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37144753

RESUMEN

Due to the high rates of drug development failure and the massive expenses associated with drug discovery, repurposing existing drugs has become more popular. As a result, we have used QSAR modelling on a large and varied dataset of 657 compounds in an effort to discover both explicit and subtle structural features requisite for ACE2 inhibitory activity, with the goal of identifying novel hit molecules. The QSAR modelling yielded a statistically robust QSAR model with high predictivity (R2tr=0.84, R2ex=0.79), previously undisclosed features, and novel mechanistic interpretations. The developed QSAR model predicted the ACE2 inhibitory activity (PIC50) of 1615 ZINC FDA compounds. This led to the detection of a PIC50 of 8.604 M for the hit molecule (ZINC000027990463). The hit molecule's docking score is -9.67 kcal/mol (RMSD 1.4). The hit molecule revealed 25 interactions with the residue ASP40, which defines the N and C termini of the ectodomain of ACE2. The HIT molecule conducted more than thirty contacts with water molecules and exhibited polar interaction with the ARG522 residue coupled with the second chloride ion, which is 10.4 nm away from the zinc ion. Both molecular docking and QSAR produced comparable findings. Moreover, MD simulation and MMGBSA studies verified docking analysis. The MD simulation showed that the hit molecule-ACE2 receptor complex is stable for 400 ns, suggesting that repurposed hit molecule 3 is a viable ACE2 inhibitor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Relación Estructura-Actividad Cuantitativa , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Simulación por Computador , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Zinc
7.
Expert Opin Drug Discov ; 19(1): 111-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37811790

RESUMEN

BACKGROUND: The process of drug development and discovery is costly and slow. Although an understanding of molecular design principles and biochemical processes has progressed, it is essential to minimize synthesis-testing cycles. An effective approach is to analyze key heteroatoms, including oxygen and nitrogen. Herein, we present an analysis focusing on the utilization of nitrogen atoms in approved drugs. RESEARCH DESIGN AND METHODS: The present work examines the frequency, distribution, prevalence, and diversity of nitrogen atoms in a dataset comprising 2,049 small molecules approved by different regulatory agencies (FDA and others). Various types of nitrogen atoms, such as sp3-, sp2-, sp-hybridized, planar, ring, and non-ring are included in this investigation. RESULTS: The results unveil both previously reported and newly discovered patterns of nitrogen atom distribution around the center of mass in the majority of drug molecules. CONCLUSIONS: This study has highlighted intriguing trends in the role of nitrogen atoms in drug design and development. The majority of drugs contain 1-3 nitrogen atoms within 5Å from the center of mass (COM) of a molecule, with a higher preference for the ring and planar nitrogen atoms. The results offer invaluable guidance for the multiparameter optimization process, thus significantly contributing toward the conversion of lead compounds into potential drug candidates.


Asunto(s)
Diseño de Fármacos , Nitrógeno , Humanos , Nitrógeno/química
8.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37895863

RESUMEN

Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.

9.
J Biomol Struct Dyn ; : 1-18, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811783

RESUMEN

A series of novel substituted 2-pyrimidinyl-2,3-dihydro-1H-naphtho[1,2-e][1, 3]oxazine analogs have been designed and synthesized based on structure-activity relationships from 2-naphthol, substituted pyrimidinyl amines and formalin through ring closure by one-pot three component reaction. These derivatives were evaluated for their in vitro cytotoxicity, cell cycle assay and their inhibitory effect on tubulin polymerization. From the MTT assay, it is clear that most of the synthesized compounds displayed potent cytotoxic activities on HeLa (cervical cancer) and B16F10 (melanoma) cancerous cell lines. The compounds 6b and 6k were found to be more effective against HeLa cell lines and exhibited significant cytotoxicity (with IC50 values 1.26 ± 0.12 µM and 1.16 ± 0.27 µM respectively), accumulation of HeLa cells in G2/M phase and exhibiting induced apoptosis. The immunohistochemistry and fluorescence assays showed that these compounds 6b and 6k inhibited the microtubule assembly in human cervical cancer cells (HeLa) at 2 µM concentration. Furthermore, molecular docking studies of these molecules revealed their better-fit potential as anticancer molecules and have a high affinity for colchicine binding site, indicating more inhibitory potential at the cellular level. Our studies suggest that the newly synthesized compounds may become promising leads for the development of new anti-cancer agents.Communicated by Ramaswamy H. Sarma.

10.
Sci Rep ; 13(1): 3361, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849725

RESUMEN

The mixed hemimicelle-based solid phase extraction method using the coated sodium dodecyl sulfate by magnetic iron oxide nanoparticles as adsorbent was developed for extraction and determination of Sunitinib malate in real samples prior to determination by UV-Visible spectrophotometry. For the characterization of synthesized nanoparticles, Fourier transform infrared spectroscopy, and scanning electron microscopy was used. The influences of different factors affecting the extraction efficiency of Sunitinib malate, including the pH, the adsorbent amount, the volume and eluent type, the amount of the surfactant, the ionic strength, extraction, and desorption time, were investigated. At the optimized conditions, a good linearity with correlation coefficients of 0.998 and 0.999 was obtained over the concentration ranges of 1-22 and 1-19 µg/mL for water and urine samples, in order. The good recoveries of 97% and 99% and also, the limits of detection equal with 0.9, and 0.8 µg/mL for water and urine samples were enhanced, respectively. These results demonstrate that mixed hemimicelle solid phase extraction is a fast, efficient, economical and selective sample preparation method for the extraction and determination of Sunitinib malate in different water and urine sample solutions.


Asunto(s)
Extracción en Fase Sólida , Orina , Sunitinib , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Magnéticos
11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498857

RESUMEN

Aurora kinase B (AKB) is a crucial signaling kinase with an important role in cell division. Therefore, inhibition of AKB is an attractive approach to the treatment of cancer. In the present work, extensive quantitative structure-activity relationships (QSAR) analysis has been performed using a set of 561 structurally diverse aurora kinase B inhibitors. The Organization for Economic Cooperation and Development (OECD) guidelines were used to develop a QSAR model that has high statistical performance (R2tr = 0.815, Q2LMO = 0.808, R2ex = 0.814, CCCex = 0.899). The seven-variable-based newly developed QSAR model has an excellent balance of external predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The QSAR analysis successfully identifies not only the visible pharmacophoric features but also the hidden features. The analysis indicates that the lipophilic and polar groups-especially the H-bond capable groups-must be present at a specific distance from each other. Moreover, the ring nitrogen and ring carbon atoms play important roles in determining the inhibitory activity for AKB. The analysis effectively captures reported as well as unreported pharmacophoric features. The results of the present analysis are also supported by the reported crystal structures of inhibitors bound to AKB.


Asunto(s)
Farmacóforo , Relación Estructura-Actividad Cuantitativa , Aurora Quinasa B , Simulación del Acoplamiento Molecular
12.
Front Aging Neurosci ; 14: 878276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072483

RESUMEN

Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain that manifests as dementia, disorientation, difficulty in speech, and progressive cognitive and behavioral impairment. The emerging therapeutic approach to AD management is the inhibition of ß-site APP cleaving enzyme-1 (BACE1), known to be one of the two aspartyl proteases that cleave ß-amyloid precursor protein (APP). Studies confirmed the association of high BACE1 activity with the proficiency in the formation of ß-amyloid-containing neurotic plaques, the characteristics of AD. Only a few FDA-approved BACE1 inhibitors are available in the market, but their adverse off-target effects limit their usage. In this paper, we have used both ligand-based and target-based approaches for drug design. The QSAR study entails creating a multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model using 552 molecules with acceptable statistical performance (R 2 = 0.82, Q 2 loo = 0.81). According to the QSAR study, the activity has a strong link with various atoms such as aromatic carbons and ring Sulfur, acceptor atoms, sp2-hybridized oxygen, etc. Following that, a database of 26,467 food compounds was primarily used for QSAR-based virtual screening accompanied by the application of the Lipinski rule of five; the elimination of duplicates, salts, and metal derivatives resulted in a truncated dataset of 8,453 molecules. The molecular descriptor was calculated and a well-validated 6-parametric version of the QSAR model was used to predict the bioactivity of the 8,453 food compounds. Following this, the food compounds whose predicted activity (pKi) was observed above 7.0 M were further docked into the BACE1 receptor which gave rise to the Identification of 4-(3,4-Dihydroxyphenyl)-2-hydroxy-1H-phenalen-1-one (PubChem I.D: 4468; Food I.D: FDB017657) as a hit molecule (Binding Affinity = -8.9 kcal/mol, pKi = 7.97 nM, Ki = 10.715 M). Furthermore, molecular dynamics simulation for 150 ns and molecular mechanics generalized born and surface area (MMGBSA) study aided in identifying structural motifs involved in interactions with the BACE1 enzyme. Molecular docking and QSAR yielded complementary and congruent results. The validated analyses can be used to improve a drug/lead candidate's inhibitory efficacy against the BACE1. Thus, our approach is expected to widen the field of study of repurposing nutraceuticals into neuroprotective as well as anti-cancer and anti-viral therapeutic interventions.

13.
Molecules ; 27(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956900

RESUMEN

ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.


Asunto(s)
Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad Cuantitativa , Quinasa de Linfoma Anaplásico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nitrógeno , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
14.
Molecules ; 27(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36014408

RESUMEN

In this study, we will present an efficient and selective adsorbent for the removal of Cu(II) ions from aqueous solutions. The silica-based adsorbent is functionalized by 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde (SiN-imd-py) and the characterization was carried out by applying various techniques including FT-IR, SEM, TGA and elemental analysis. The SiN-imd-py adsorbent shows a good selectivity and high adsorption capacity towards Cu(II) and reached 100 mg/g at pH = 6 and T = 25 °C. This adsorption capacity is important compared to other similar adsorbents which are currently published. The adsorption mechanism, thermodynamics, reusability and the effect of different experimental conditions, such as contact time, pH and temperature, on the adsorption process, were also investigated. In addition, a theoretical study was carried out to understand the adsorption mechanism and the active sites of the adsorbent, as well as the stability of the complex formed and the nature of the bonds.


Asunto(s)
Dióxido de Silicio , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Piridinas , Dióxido de Silicio/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/química
15.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897936

RESUMEN

Using 84 structurally diverse and experimentally validated LSD1/KDM1A inhibitors, quantitative structure-activity relationship (QSAR) models were built by OECD requirements. In the QSAR analysis, certainly significant and understated pharmacophoric features were identified as critical for LSD1 inhibition, such as a ring Carbon atom with exactly six bonds from a Nitrogen atom, partial charges of lipophilic atoms within eight bonds from a ring Sulphur atom, a non-ring Oxygen atom exactly nine bonds from the amide Nitrogen, etc. The genetic algorithm-multi-linear regression (GA-MLR) and double cross-validation criteria were used to create robust QSAR models with high predictability. In this study, two QSAR models were developed, with fitting parameters like R2 = 0.83-0.81, F = 61.22-67.96, internal validation parameters such as Q2LOO = 0.79-0.77, Q2LMO = 0.78-0.76, CCCcv = 0.89-0.88, and external validation parameters such as, R2ext = 0.82 and CCCex = 0.90. In terms of mechanistic interpretation and statistical analysis, both QSAR models are well-balanced. Furthermore, utilizing the pharmacophoric features revealed by QSAR modelling, molecular docking experiments corroborated with the most active compound's binding to the LSD1 receptor. The docking results are then refined using Molecular dynamic simulation and MMGBSA analysis. As a consequence, the findings of the study can be used to produce LSD1/KDM1A inhibitors as anticancer leads.


Asunto(s)
Lisina , Relación Estructura-Actividad Cuantitativa , Histona Demetilasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nitrógeno
16.
Saudi Pharm J ; 30(6): 693-710, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812153

RESUMEN

The aldose reductase (AR) enzyme is an important target enzyme in the development of therapeutics against hyperglycaemia induced health complications such as retinopathy, etc. In the present study, a quantitative structure activity relationship (QSAR) evaluation of a dataset of 226 reported AR inhibitor (ARi) molecules is performed using a genetic algorithm - multi linear regression (GA-MLR) technique. Multi-criteria decision making (MCDM) analysis furnished two five variables based QSAR models with acceptably high performance reflected in various statistical parameters such as, R2 = 0.79-0.80, Q2 LOO = 0.78-0.79, Q2 LMO = 0.78-0.79. The QSAR model analysis revealed some of the molecular features that play crucial role in deciding inhibitory potency of the molecule against AR such as; hydrophobic Nitrogen within 2 Å of the center of mass of the molecule, non-ring Carbon separated by three and four bonds from hydrogen bond donor atoms, number of sp2 hybridized Oxygen separated by four bonds from sp2 hybridized Carbon atoms, etc. 14 in silico generated hits, using a compound 18 (a most potent ARi from present dataset with pIC50 = 8.04 M) as a template, on QSAR based virtual screening (QSAR-VS) furnished a scaffold 5 with better ARi activity (pIC50 = 8.05 M) than template compound 18. Furthermore, molecular docking of compound 18 (Docking Score = -7.91 kcal/mol) and scaffold 5 (Docking Score = -8.08 kcal/mol) against AR, divulged that they both occupy the specific pocket(s) in AR receptor binding sites through hydrogen bonding and hydrophobic interactions. Molecular dynamic simulation (MDS) and MMGBSA studies right back the docking results by revealing the fact that binding site residues interact with scaffold 5 and compound 18 to produce a stable complex similar to co-crystallized ligand's conformation. The QSAR analysis, molecular docking, and MDS results are all in agreement and complementary. QSAR-VS successfully identified a more potent novel ARi and can be used in the development of therapeutic agents to treat diabetes.

17.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35890133

RESUMEN

The 5-hydroxytryptamine receptor 6 (5-HT6) has gained attention as a target for developing therapeutics for Alzheimer's disease, schizophrenia, cognitive dysfunctions, anxiety, and depression, to list a few. In the present analysis, a larger and diverse dataset of 1278 molecules covering a broad chemical and activity space was used to identify visual and concealed structural features associated with binding affinity for 5-HT6. For this, quantitative structure-activity relationships (QSAR) and molecular docking analyses were executed. This led to the development of a statistically robust QSAR model with a balance of excellent predictivity (R2tr = 0.78, R2ex = 0.77), the identification of unreported aspects of known features, and also novel mechanistic interpretations. Molecular docking and QSAR provided similar as well as complementary results. The present analysis indicates that the partial charges on ring carbons present within four bonds from a sulfur atom, the occurrence of sp3-hybridized carbon atoms bonded with donor atoms, and a conditional occurrence of lipophilic atoms/groups from nitrogen atoms, which are prominent but unreported pharmacophores that should be considered while optimizing a molecule for 5-HT6. Thus, the present analysis led to identification of some novel unreported structural features that govern the binding affinity of a molecule. The results could be beneficial in optimizing the molecules for 5-HT6.

18.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35890189

RESUMEN

Colorectal cancer oncogenesis is linked to dysbiosis, oxidative stress and overexpression of CDK2. The 4H-pyran scaffold is considered an antitumoral, antibacterial and antioxidant lead as well as a CDK2 inhibitor. Herein, certain 4H-pyran derivatives were evaluated as antibacterial, antioxidant and cytotoxic agents against HCT-116 cells. Derivatives 4g and 4j inhibited all the tested Gram-positive isolates, except for B. cereus (ATCC 14579), with lower IC50 values (µM) than ampicillin. In addition, 4g and 4j demonstrated the strongest DPPH scavenging and reducing potencies, with 4j being more efficient than BHT. In cell viability assays, 4d and 4k suppressed the proliferation of HCT-116 cells, with the lowest IC50 values being 75.1 and 85.88 µM, respectively. The results of molecular docking simulations of 4d and 4k, inhibitory kinase assays against CDK2, along with determination of CDK2 protein concentration and the expression level of CDK2 gene in the lysates of HCT-116 treated cells, suggested that these analogues blocked the proliferation of HCT-116 cells by inhibiting kinase activity and downregulating expression levels of CDK2 protein and gene. Moreover, 4d and 4k were found to induce apoptosis in HCT-116 cells via activation of the caspase-3 gene. Lastly, compounds 4g, 4j, 4d and 4k were predicted to comply with Lipinski's rule of five, and they are expected to possess excellent physiochemical and pharmacokinetic properties suitable for in vivo bioavailability, as predicted by the SwissADME web tool.

19.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745664

RESUMEN

Bromodomain-4 (BRD-4) is a key enzyme in post-translational modifications, transcriptional activation, and many other cellular processes. Its inhibitors find their therapeutic usage in cancer, acute heart failure, and inflammation to name a few. In the present study, a dataset of 980 molecules with a significant diversity of structural scaffolds and composition was selected to develop a balanced QSAR model possessing high predictive capability and mechanistic interpretation. The model was built as per the OECD (Organisation for Economic Co-operation and Development) guidelines and fulfills the endorsed threshold values for different validation parameters (R2tr = 0.76, Q2LMO = 0.76, and R2ex = 0.76). The present QSAR analysis identified that anti-BRD-4 activity is associated with structural characters such as the presence of saturated carbocyclic rings, the occurrence of carbon atoms near the center of mass of a molecule, and a specific combination of planer or aromatic nitrogen with ring carbon, donor, and acceptor atoms. The outcomes of the present analysis are also supported by X-ray-resolved crystal structures of compounds with BRD-4. Thus, the QSAR model effectively captured salient as well as unreported hidden pharmacophoric features. Therefore, the present study successfully identified valuable novel pharmacophoric features, which could be beneficial for the future optimization of lead/hit compounds for anti-BRD-4 activity.

20.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35337101

RESUMEN

Cancer is a major life-threatening disease with a high mortality rate in many countries. Even though different therapies and options are available, patients generally prefer chemotherapy. However, serious side effects of anti-cancer drugs compel us to search for a safer drug. To achieve this target, Hsp90 (heat shock protein 90), which is responsible for stabilization of many oncoproteins in cancer cells, is a promising target for developing an anti-cancer drug. The QSAR (Quantitative Structure-Activity Relationship) could be useful to identify crucial pharmacophoric features to develop a Hsp90 inhibitor. Therefore, in the present work, a larger dataset encompassing 1141 diverse compounds was used to develop a multi-linear QSAR model with a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The new developed six-parameter model satisfies the recommended values for a good number of validation parameters such as R2tr = 0.78, Q2LMO = 0.77, R2ex = 0.78, and CCCex = 0.88. The present analysis reveals that the Hsp90 inhibitory activity is correlated with different types of nitrogen atoms and other hidden structural features such as the presence of hydrophobic ring/aromatic carbon atoms within a specific distance from the center of mass of the molecule, etc. Thus, the model successfully identified a variety of reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with Hsp90.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...