Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0186623, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971252

RESUMEN

IMPORTANCE: Toxin production and sporulation are key determinants of pathogenesis in Clostridia. Toxins cause the clinical manifestation of clostridial diseases, including diarrhea and colitis, tissue damage, and systemic effects on the nervous system. Spores ensure long-term survival and persistence in the environment, act as infectious agents, and initiate the host tissue colonization leading to infection. Understanding the interplay between toxin production and sporulation and their coordination in bacterial cells and cultures provides novel intervention points for controlling the public health and food safety risks caused by clostridial diseases. We demonstrate environmentally driven cellular heterogeneity in botulinum neurotoxin and spore production in Clostridium botulinum type E populations and discuss the biological rationale of toxin and spore production in the pathogenicity and ecology of C. botulinum. The results invite to reassess the epidemiology of botulism and may have important implications in the risk assessment and risk management strategies in food processing and human and animal health.

2.
Front Microbiol ; 12: 617269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584620

RESUMEN

The spores of Clostridium botulinum Group II strains pose a significant threat to the safety of modern packaged foods due to the risk of their survival in pasteurization and their ability to germinate into neurotoxigenic cultures at refrigeration temperatures. Moreover, spores are the infectious agents in wound botulism, infant botulism, and intestinal toxemia in adults. The identification of factors that contribute to spore formation is, therefore, essential to the development of strategies to control related health risks. Accordingly, development of a straightforward and versatile gene manipulation tool and an efficient sporulation-promoting medium is pivotal. Our strategy was to employ CRISPR-Cas9 and homology-directed repair (HDR) to replace targeted genes with mutant alleles incorporating a unique 24-nt "bookmark" sequence that could act as a single guide RNA (sgRNA) target for Cas9. Following the generation of the sporulation mutant, the presence of the bookmark allowed rapid generation of a complemented strain, in which the mutant allele was replaced with a functional copy of the deleted gene using CRISPR-Cas9 and the requisite sgRNA. Then, we selected the most appropriate medium for sporulation studies in C. botulinum Group II strains by measuring the efficiency of spore formation in seven different media. The most effective medium was exploited to confirm the involvement of a candidate gene in the sporulation process. Using the devised sporulation medium, subsequent comparisons of the sporulation efficiency of the wild type (WT), mutant and "bookmark"-complemented strain allowed the assignment of any defective sporulation phenotype to the mutation made. As a strain generated by complementation with the WT gene in the original locus would be indistinguishable from the parental strain, the gene utilized in complementation studies was altered to contain a unique "watermark" through the introduction of silent nucleotide changes. The mutagenesis system and the devised sporulation medium provide a solid basis for gaining a deeper understanding of spore formation in C. botulinum, a prerequisite for the development of novel strategies for spore control and related food safety and public health risk management.

3.
Environ Microbiol ; 19(10): 4287-4300, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809452

RESUMEN

Clostridium botulinum produces the most potent natural toxin, the botulinum neurotoxin (BoNT), probably to create anaerobiosis and nutrients by killing the host, and forms endospores that facilitate survival in harsh conditions and transmission. Peak BoNT production coincides with initiation of sporulation in C. botulinum cultures, which suggests common regulation. Here, we show that Spo0A, the master regulator of sporulation, positively regulates BoNT production. Insertional inactivation of spo0A in C. botulinum type E strain Beluga resulted in significantly reduced BoNT production and in abolished or highly reduced sporulation in relation to wild-type controls. Complementation with spo0A restored BoNT production and sporulation. Recombinant DNA-binding domain of Spo0A directly bound to a putative Spo0A-binding box (CTTCGAA) within the BoNT/E operon promoter, demonstrating direct regulation. Spo0A is the first neurotoxin regulator reported in C. botulinum type E. Unlike other C. botulinum strains that are terrestrial and employ the alternative sigma factor BotR in directing BoNT expression, C. botulinum type E strains are adapted to aquatic ecosystems, possess distinct epidemiology and lack BotR. Our results provide fundamental new knowledge on the genetic control of BoNT production and demonstrate common regulation of BoNT production and sporulation, providing a key intervention point for control.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Botulínicas/biosíntesis , Clostridium botulinum tipo E/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Neurotoxinas/biosíntesis , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión/genética , Toxinas Botulínicas/genética , Clostridium botulinum tipo E/genética , Clostridium botulinum tipo E/patogenicidad , Mutagénesis Insercional/genética , Neurotoxinas/genética , Regiones Promotoras Genéticas/genética , Factor sigma/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Factores de Transcripción/genética
4.
PLoS One ; 12(5): e0176944, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28464023

RESUMEN

Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/metabolismo , Respuesta al Choque Térmico/fisiología , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Calor , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
5.
PLoS One ; 10(9): e0136957, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26327557

RESUMEN

In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.


Asunto(s)
Genes Fúngicos/genética , Metabolismo de los Lípidos/genética , Mutación/genética , Levaduras/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citidina Difosfato Colina/genética , Citidina Difosfato Colina/metabolismo , Ésteres/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Glucógeno/genética , Glucógeno/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo , Levaduras/metabolismo
6.
Appl Environ Microbiol ; 80(1): 399-407, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24185852

RESUMEN

In order to survive a temperature downshift, bacteria have to sense the changing environment and adjust their metabolism and structure. Two-component signal transduction systems (TCSs) play a central role in sensing and responding to many different environmental stimuli. Although the nonproteolytic (group II) Clostridium botulinum represents a major hazard in chilled foods, the cold adaption mechanisms of group II C. botulinum organisms are not known. Here, we show that the CLO3403/CLO3404 TCS of C. botulinum E1 Beluga is involved in the cold shock response and growth at 12°C. Cold shock induced the expression of the genes encoding the histidine kinase (clo3403) and the response regulator (clo3404) by more than 100-fold after 5 h relative to their expression in a nonshocked culture at the corresponding time point. The involvement of CLO3403/CLO3404 in growth at low temperature was demonstrated by impaired growth of the insertional clo3403 and clo3404 knockout mutants at 12°C compared to the growth of the wild-type culture. Additionally, the inactivation of clo3403 had a negative effect on motility. The growth efficiency at 12°C of the TCS mutants and the motility of the kinase mutants were restored by introducing a plasmid harboring the operon of the CLO3403/CLO3404 TCS. The results suggest that the CLO3403/CLO3404 TCS is important for the cold tolerance of C. botulinum E1 Beluga.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium botulinum/crecimiento & desarrollo , Clostridium botulinum/efectos de la radiación , Respuesta al Choque por Frío , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Clostridium botulinum/genética , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Histidina Quinasa , Mutagénesis Insercional , Proteínas Quinasas/genética , Temperatura , Factores de Transcripción/genética
7.
PLoS One ; 8(10): e77380, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146988

RESUMEN

In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.


Asunto(s)
Carboxiliasas/genética , Eliminación de Gen , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Carboxiliasas/metabolismo , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Espacio Intracelular , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Fenotipo , Fosfolípidos/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA