Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photoacoustics ; 29: 100453, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36718271

RESUMEN

Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods. In this manuscript we report on the capabilities of this technique in the context of probing thermoelastic properties of matter, both in the bulk and at the surface, as well as discussing future developments and practical considerations.

2.
Nat Commun ; 14(1): 386, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693825

RESUMEN

Ultrafast optical-domain spectroscopies allow to monitor in real time the motion of nuclei in molecules. Achieving element-selectivity had to await the advent of time resolved X-ray spectroscopy, which is now commonly carried at X-ray free electron lasers. However, detecting light element that are commonly encountered in organic molecules, remained elusive due to the need to work under vacuum. Here, we present an impulsive stimulated Raman scattering (ISRS) pump/carbon K-edge absorption probe investigation, which allowed observation of the low-frequency vibrational modes involving specific selected carbon atoms in the Ibuprofen RS dimer. Remarkably, by controlling the probe light polarization we can preferentially access the enantiomer of the dimer to which the carbon atoms belong.

3.
Phys Rev Lett ; 125(15): 155703, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095640

RESUMEN

A liquid carbon (l-C) sample is generated through constant volume heating exposing an amorphous carbon foil to an intense ultrashort laser pulse. Time-resolved x-ray absorption spectroscopy at the C K edge is used to monitor the dynamics of the melting process revealing a subpicosecond rearrangement of the electronic structure associated with a sudden change of the C bonding hybridization. The obtained l-C sample, resulting from a nonthermal melting mechanism, reaches a transient equilibrium condition with a temperature of about 14 200 K and pressure in the order of 0.5 Mbar in about 0.3 ps, prior to hydrodynamic expansion. A detailed analysis of the atomic and electronic structure in solid-density l-C based on time-resolved x-ray absorption spectroscopy and theoretical simulations is presented. The method can be fruitfully used for extending the experimental investigation of the C phase diagram in a vast unexplored region covering the 10^{3}-10^{4} K temperature range with pressures up to 1 Mbar.

4.
Phys Chem Chem Phys ; 22(20): 11583-11592, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32400802

RESUMEN

The human telomeric G-quadruplex structural motif of DNA has come to be known as a new and stimulating target for anticancer drug discovery. Small molecules that interact with G-quadruplex structures in a selective way have gained impressive interest in recent years as they may serve as potential therapeutic agents. Here, we show how circular dichroism, UV resonance Raman and small angle X-ray scattering spectroscopies can be effectively combined to provide insights into structural and molecular aspects of the interaction between human telomeric quadruplexes and ligands. This study focuses on the ability of berberine and palmatine to bind with human telomeric quadruplexes and provides analysis of the conformational landscape visited by the relevant complexes upon thermal unfolding. With increasing temperature, both free and bound G-quadruplexes undergo melting through a multi-state process, populating different intermediate states. Despite the structural similarity of the two ligands, valuable distinctive features characterising their interaction with the G-quadruplex emerged from our multi-technique approach.


Asunto(s)
Alcaloides de Berberina/metabolismo , Berberina/metabolismo , ADN/metabolismo , G-Cuádruplex , Berberina/química , Alcaloides de Berberina/química , Dicroismo Circular , ADN/química , ADN/genética , Humanos , Ligandos , Dispersión del Ángulo Pequeño , Espectrometría Raman , Difracción de Rayos X
5.
Phys Rev Lett ; 124(18): 184801, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441964

RESUMEN

An extreme ultraviolet pump and visible-light probe transmission experiment in crystalline LiF, carried out at the Free Electron Laser facility FERMI, revealed an oscillating time dependence of the plasmon mode excited in the high-density high-temperature electron plasma. The effect is interpreted as a fingerprint of the electron-ion interaction: the ion motion, shaped by the electron dynamic screening, induces, in turn, electron density fluctuations that cause the oscillation of the plasmon frequency at the timescale of the ion dynamics. Fitting the high resolution transmission data with an RPA model for the temperature-dependent dielectric function, which includes electron self-energy and electron-ion coupling, confirms the interpretation of the time modulation of the plasmon mode.

6.
Struct Dyn ; 6(4): 040901, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31372368

RESUMEN

The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the Nth order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.

7.
Sci Adv ; 5(7): eaaw5805, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31360768

RESUMEN

Advances in developing ultrafast coherent sources operating at extreme ultraviolet (EUV) and x-ray wavelengths allow the extension of nonlinear optical techniques to shorter wavelengths. Here, we describe EUV transient grating spectroscopy, in which two crossed femtosecond EUV pulses produce spatially periodic nanoscale excitations in the sample and their dynamics is probed via diffraction of a third time-delayed EUV pulse. The use of radiation with wavelengths down to 13.3 nm allowed us to produce transient gratings with periods as short as 28 nm and observe thermal and coherent phonon dynamics in crystalline silicon and amorphous silicon nitride. This approach allows measurements of thermal transport on the ~10-nm scale, where the two samples show different heat transport regimes, and can be applied to study other phenomena showing nontrivial behaviors at the nanoscale, such as structural relaxations in complex liquids and ultrafast magnetic dynamics.

8.
Phys Rev Lett ; 120(26): 263901, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004768

RESUMEN

The extension of nonlinear optical techniques to the extreme-ultraviolet (EUV), soft and hard x-ray regime represents one of the open challenges of modern science since it would combine chemical specificity with background-free detection and ultrafast time resolution. We report on the first observation of a four-wave-mixing (FWM) response from solid-state samples stimulated exclusively by EUV pulses. The all-EUV FWM signal was generated by the diffraction of high-order harmonics of the FERMI free-electron laser (FEL) from the standing wave resulting from the interference of two crossed FEL pulses at the fundamental wavelength. From the intensity of the FWM signal, we are able to extract the first-ever estimate of an effective value of ∼6×10^{-24} m^{2} V^{-2} for the third-order nonlinear susceptibility in the EUV regime. This proof of principle experiment represents a significant advance in the field of nonlinear optics and sets the starting point for a manifold of techniques, including frequency and phase-resolved FWM methods, that are unprecedented in this photon-energy regime.

9.
Opt Express ; 26(9): 11877-11888, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716104

RESUMEN

We hereby report on a set of transient optical reflectivity and transmissivity measurements performed on silicon nitride thin membranes excited by extreme ultraviolet (EUV) radiation from a free electron laser (FEL). Experimental data were acquired as a function of the membrane thickness, FEL fluence and probe polarization. The time dependence of the refractive index, retrieved using Jones matrix formalism, encodes the dynamics of electron and lattice excitation following the FEL interaction. The observed dynamics are interpreted in the framework of a two temperature model, which permits to extract the relevant time scales and magnitudes of the processes. We also found that in order to explain the experimental data thermo-optical effects and inter-band filling must be phenomenologically added to the model.

10.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376703

RESUMEN

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

11.
J Synchrotron Radiat ; 25(Pt 1): 32-38, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271748

RESUMEN

The characterization of the time structure of ultrafast photon pulses in the extreme-ultraviolet (EUV) and soft X-ray spectral ranges is of high relevance for a number of scientific applications and photon diagnostics. Such measurements can be performed following different strategies and often require large setups and rather high pulse energies. Here, high-quality measurements carried out by exploiting the transient grating process, i.e. a third-order non-linear process sensitive to the time-overlap between two crossed EUV pulses, is reported. From such measurements it is possible to obtain information on both the second-order intensity autocorrelation function and on the coherence length of the pulses. It was found that the pulse energy density needed to carry out such measurements on solid state samples can be as low as a few mJ cm-2. Furthermore, the possibility to control the arrival time of the crossed pulses independently might permit the development of a number of coherent spectroscopies in the EUV and soft X-ray regime, such as, for example, photon echo and two-dimensional spectroscopy.

12.
Rep Prog Phys ; 80(11): 115901, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29059048

RESUMEN

This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

13.
Phys Chem Chem Phys ; 19(33): 22555-22563, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28809977

RESUMEN

UV Raman and Brillouin light scattering (BLS) experiments have been used in this study to explore the complex phase change behavior occurring in pH-responsive polysaccharide hydrogels as a function of temperature. Due to the different physical quantities measured by the two techniques, the joint analysis of Raman and BLS spectra has provided an unprecedented large-scale characterization of the molecular rearrangements and of the different kinds of hydrophilic and hydrophobic interactions that cooperate to determine the phase transformation observed in these hydrogels during the heating of the gel. As the main result, the analysis of the Raman and BLS spectra showed the existence of a correlation between the local (molecular) and collective properties of the gels during the phase transformation undergone by the system, which is markedly triggered by pH. The joint set of experimental results suggests a model according to which the mechanism of pH dependence in the hydrogels under investigation is dominated by the interactions involving the hydrophobic parts of the polymer skeleton, whereas the solvation process observed under heating of the gels is driven by the progressive distancing of the polymer domains among them, as monitored by the Brillouin sound velocity.

14.
Struct Dyn ; 4(4): 044017, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28428974

RESUMEN

Revealing the structure of complex biological macromolecules, such as proteins, is an essential step for understanding the chemical mechanisms that determine the diversity of their functions. Synchrotron based X-ray crystallography and cryo-electron microscopy have made major contributions in determining thousands of protein structures even from micro-sized crystals. They suffer from some limitations that have not been overcome, such as radiation damage, the natural inability to crystallize a number of proteins, and experimental conditions for structure determination that are incompatible with the physiological environment. Today, the ultra-short and ultra-bright pulses of X-ray free-electron lasers have made attainable the dream to determine protein structures before radiation damage starts to destroy the samples. However, the signal-to-noise ratio remains a great challenge to obtain usable diffraction patterns from a single protein molecule. With the perspective to overcome these challenges, we describe here a new methodology that has the potential to overcome the signal-to-noise-ratio and protein crystallization limits. Using a multidisciplinary approach, we propose to create ordered, two dimensional protein arrays with defined orientation attached on a self-assembled-monolayer. We develop a literature-based flexible toolbox capable of assembling different kinds of proteins on a functionalized surface and consider using a graphene cover layer that will allow performing experiments with proteins in physiological conditions.

15.
Sci Rep ; 6: 38796, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941842

RESUMEN

In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

16.
Faraday Discuss ; 194: 283-303, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711831

RESUMEN

The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

17.
Soft Matter ; 12(43): 8861-8868, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27734051

RESUMEN

The focus of the present work is to shed light on possible modifications of the molecular properties of polysaccharide hydrogels induced by the establishment of specific non-covalent interactions during the loading of a guest compound inside the gel phase. With this aim, a case study of the encapsulation of caffeine (Caf) inside cyclodextrin-based hydrogels, namely, cyclodextrin nanosponges (NS), is systematically investigated here by using UV Raman scattering experiments. The UV Raman spectra of the hydrogels, analysed as a function of temperature, concentration of the guest molecule loaded in the gel phase and pH, prove particularly informative both on the structural rearrangements of the hydrophobic/hydrophilic groups of the polymeric network and on the breaking/formation of specific guest-matrix interactions. Analysis of the temperature dependence of dynamical parameters, i.e., the dephasing time associated with specific vibrational modes of the polymer backbone, enables the proposal of a molecular picture in which the loading of Caf in NS hydrogels tends to favour access of the water solvent to the more hydrophobic portions of the polymer matrix, which is in turn reflected in a marked increase in the solvation of the whole system. The achievements of this work appear of interest with respect to the design of new possible strategies for controlling the diffusion/release of bioactive molecules inside hydrogel networks, besides corroborating the potential of UV Raman scattering experiments to give new molecular insights into complex phenomena affecting hydrogel phases.

18.
Phys Chem Chem Phys ; 18(17): 12252-9, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27081681

RESUMEN

The fundamental question of how the reorganization of the hydrogen-bond (HB) network of water is influenced by the combination of nano-confinement and hydrophobic/hydrophilic solvation effects is addressed here using a spectroscopic study of water absorbed in a model, pH-sensitive polysaccharide hydrogel. The effects of temperature, hydration level and pH on the vibrational dynamics associated with the water molecules and the polymer skeleton are disentangled and analysed by a complementary and combined use of UV-Raman scattering and IR spectroscopy. The experimental data give evidence that the solvation effects in the hydrogel matrix are essentially dominated by the hydration of more hydrophobic parts of the polymer network, while the effect of pH on the HB reorganization of confined water molecules is found to be similar to that induced by cooling of the system. A tentative explanation of these results has been provided in terms of interplay between different kinds of interactions, i.e. hydrophobic vs. hydrophilic.

19.
Phys Chem Chem Phys ; 18(19): 13478-86, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27127808

RESUMEN

During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.


Asunto(s)
Cafeína/química , Agua/química , Adenina/química , Guanina/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación de Ácido Nucleico , Purinas/química , Teoría Cuántica , Soluciones , Temperatura , Rayos Ultravioleta
20.
Struct Dyn ; 3(2): 023604, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26798835

RESUMEN

High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...