Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnobiol Ethnomed ; 20(1): 78, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164694

RESUMEN

BACKGROUND: While bats are tremendously important to global ecosystems, they have been and continue to be threatened by loss of habitat, food, or roosts, pollution, bat diseases, hunting and killing. Some bat species have also been implicated in the transmission of infectious disease agents to humans. While One Health efforts have been ramped up recently to educate and protect human and bat health, such initiatives have been limited by lack of adequate data on the pathways to ensure their support. For instance, data on the role of bats in supporting different components of human welfare assets would be utilized as a stepping stone to champion conservation campaigns. Unfortunately, these data are limited and efforts to synthesize existing literature have majorly focused on few components human welfare leaving other important aspects. METHODS: Here, we analyze benefits associated with bats in the context of welfare economics considering all the asset components. We surveyed scientific and gray literature platforms utilizing particular keywords. We then classified these values using integrated approaches to understand different values across human welfare assets of "health," "material and immaterial assets," "security or safety" and "social or cultural or spiritual relations". RESULTS: We found 235 papers from different countries indicating that bats play fundamental roles in supporting human welfare. These benefits were more prevalent in Asia and Africa. In terms of the use of bats to support welfare assets, bats were majorly utilized to derive material and immaterial benefits (n = 115), e.g., food and income. This was followed by their use in addressing health challenges (n = 99), e.g., treatment of ailments. There was a similarity in the benefits across different regions and countries. CONCLUSION: These results indicate potential opportunities for strengthening bat conservation programs. We recommend more primary studies to enhance understanding of these benefits as well as their effectiveness in deriving the perceived outcomes.


Asunto(s)
Quirópteros , Animales , Humanos , Conservación de los Recursos Naturales , Factores Socioeconómicos
2.
Syst Biol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140829

RESUMEN

African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called 'Kingdon's Line'. However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation, and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.

3.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609362

RESUMEN

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Asunto(s)
Antílopes , Animales , Antílopes/genética , Ecosistema , África Oriental , África Austral , Efectos Antropogénicos
4.
BMC Vet Res ; 20(1): 119, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528496

RESUMEN

BACKGROUND: Rhipicephalus (Boophilus) microplus (Canestrini, 1888), the Asian blue tick, is a highly invasive and adaptable ectoparasite. This tick species has successfully established itself in most regions of the world, with movement of cattle being a major driver for its spread. In the recent past, R. microplus ticks have been reported in three districts of Uganda. Information on its spread and distribution are vital in deepening our understanding of the ecological scenarios that lead to tick persistence and in the formulation of control strategies. This is especially important in the cattle-dense districts. METHODS: We randomly collected tick specimens from 1,461cattle spread across seven cattle dense districts located in the Central, Karamoja and West Nile regions of Uganda from January to September 2020. The ticks were identified using standard morpho-taxonomic keys and the R. microplus tick species identities were confirmed by sequencing of the ITS2 region, 12S rRNA and 16S rRNA genes and phylogenetic analyses. RESULTS: Adult ticks (n = 13,019) were collected from 1,461 cattle. Seventeen tick species were identified based on morpho-taxonomic keys and the majority (47.4%; n=6184) of these were R. appendiculatus. In total, 257 R. microplus ticks were found infesting cattle in 18 study sites in the districts of Amudat, Kaabong, Napak (Karamoja region) and Arua (West Nile region). The identity of R. microplus was confirmed using molecular technics. No R. microplus tick was recorded in the districts of Lyantonde and Nakaseke (Central region). Arua district accounted for 82.1% (n=211) of the R. microplus ticks recorded followed by Napak district at 16.3% (n=42), while Amudat and Kaabong districts accounted for 1.5% (n=4). Rhipicephalus microplus and R. decoloratus co-existed in 6 of the 13 study sites in Arua district, while in another 6 study sites, no R. decoloratus was recorded. In the Karamoja region districts R. decoloratus co-existed with R.microplus. Of the total 618 ticks belonging to four species of the subgenus Boophilus recorded in this study, R. decoloratus accounted for 50.04% (n=334), followed by R. microplus at 41.58% (n=257), R. geigyi at 2.75% (n=17) and R. annulatus at 1.61% (n=10). In the districts of Amudat, Kaabong and Napak, R. decoloratus was more dominant (76.1%; n=179) of the three Rhipicephalus (Boophilus) tick species recorded, followed by R. microplus (19.5%; n=46) and R. geigyi (4.2%; n=10). Contrariwise, R. microplus was more dominant (84%; n=211) in Arua district followed by R. decoloratus (10.7%; n=27), R. annulatus (3.9%; n=10) and R. geigyi (1.1%; n=3). Phylogenetic analyses of the ITS2 region, 12S rRNA and 16S rRNA genes revealed subgrouping of the obtained sequences with the previously published R. microplus sequences from other parts of the world. CONCLUSION: Rhipicephalus microplus ticks were found infesting cattle in four districts of Uganda. The inability to find R. decoloratus, an indigenous tick, from six sites in the district of Arua is suggestive of its replacement by R. microplus. Rhipicephalus microplus negatively affects livestock production, and therefore, there is a need to determine its distribution and to deepen the understanding of the ecological factors that lead to its spread and persistence in an area.


Asunto(s)
Enfermedades de los Bovinos , Rhipicephalus , Infestaciones por Garrapatas , Bovinos , Animales , ARN Ribosómico 16S/genética , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Uganda/epidemiología , Filogenia , Control de Ácaros y Garrapatas , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología
5.
Front Genet ; 15: 1325569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516375

RESUMEN

The genetic diversity of indigenous chickens, which comprise over 80% of the chicken resources in Uganda, is largely not well-characterized for their genetic contribution. This study assessed the genetic diversity and population structure of the indigenous chicken population in Uganda to serve as an essential component for improvement and conservation strategies. A set of 344 mitochondrial DNA (mtDNA) D-loop sequences among 12 Ugandan chicken populations was evaluated. Twenty-eight polymorphic sites, accounting for 4.26% of the total analyzed loci of 658 bp, defined 32 haplotypes. The haplotype diversity (Hd) was 0.437, with a nucleotide diversity (π) of 0.0169, while the average number of nucleotide differences (k) was 0.576, indicating a population that is moderately genetically diverse. Analysis of molecular variance found 98.39% (ρ < 0.01) of the total sequence variation among the chicken haplotypes within populations, 1.08% (ρ < 0.05) among populations, and 0.75% (ρ > 0.05) among populations within regions. This revealed subtle genetic differentiation among the populations, which appeared to be influenced by population fragmentation, probably due to neutral mutation, random genetic drift, and/or balancing selection. All the haplotypes showed affinity exclusively to the haplogroup-E mtDNA phylogeny, with haplotype UGA01 signaling an ancestral haplotype in Uganda. Neutrality tests Tajima's D (-2.320) and Fu's Fs (-51.369), augmented with mismatch distribution to measure signatures of recent historical demographic events, supported a population expansion across the chicken populations. The results show one matrilineal ancestry of Ugandan chickens from a lineage widespread throughout the world that began in the Indian subcontinent. The lack of phylogeographic signals is consistent with recent expansion events with extensive within-country genetic intermixing among haplotypes. Thus, the findings in this study hold the potential to guide conservation strategies and breeding programs in Uganda, given that higher genetic diversity comes from within the chicken population.

6.
Microbiol Resour Announc ; 13(4): e0097823, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38477459

RESUMEN

African swine fever virus has been endemic in Cameroon since 1982. Here, we announce the sequences of Cameroon/2016/C1, Cameroon/2016/C5, Cameroon/2017/C-A2, Cameroon/2018/C02, and Cameroon/2018/CF3, five genotype 1 African swine fever virus genomes collected from domestic pigs between 2016 and 2018.

7.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38479386

RESUMEN

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Asunto(s)
Jirafas , Animales , Jirafas/genética , Rumiantes/genética , Evolución Biológica , Filogenia , Flujo Genético
8.
Genomics ; 116(1): 110781, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38182036

RESUMEN

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Asunto(s)
Cíclidos , Humanos , Animales , Cíclidos/genética , Uganda , Acuicultura , Cruzamiento , Variación Genética
9.
Nat Commun ; 15(1): 172, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172616

RESUMEN

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.


Asunto(s)
Mamíferos , Humanos , Animales , Porcinos , Madagascar , Filogenia , Porosidad , Filogeografía , Mamíferos/genética
10.
Viruses ; 16(1)2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-38257767

RESUMEN

In 2007, an outbreak of African swine fever (ASF), a deadly disease of domestic swine and wild boar caused by the African swine fever virus (ASFV), occurred in Georgia and has since spread globally. Historically, ASFV was classified into 25 different genotypes. However, a newly proposed system recategorized all ASFV isolates into 6 genotypes exclusively using the predicted protein sequences of p72. However, ASFV has a large genome that encodes between 150-200 genes, and classifications using a single gene are insufficient and misleading, as strains encoding an identical p72 often have significant mutations in other areas of the genome. We present here a new classification of ASFV based on comparisons performed considering the entire encoded proteome. A curated database consisting of the protein sequences predicted to be encoded by 220 reannotated ASFV genomes was analyzed for similarity between homologous protein sequences. Weights were applied to the protein identity matrices and averaged to generate a genome-genome identity matrix that was then analyzed by an unsupervised machine learning algorithm, DBSCAN, to separate the genomes into distinct clusters. We conclude that all available ASFV genomes can be classified into 7 distinct biotypes.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Aprendizaje Automático no Supervisado , Genotipo , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA