Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 103(28): 10536-43, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16815970

RESUMEN

Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.


Asunto(s)
Efecto Invernadero , Historia Natural , Clima Tropical , Humanos
2.
Science ; 298(5593): 589-93, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12386332

RESUMEN

Six ice cores from Kilimanjaro provide an approximately 11.7-thousand-year record of Holocene climate and environmental variability for eastern equatorial Africa, including three periods of abrupt climate change: approximately 8.3, approximately 5.2, and approximately 4 thousand years ago (ka). The latter is coincident with the "First Dark Age," the period of the greatest historically recorded drought in tropical Africa. Variable deposition of F- and Na+ during the African Humid Period suggests rapidly fluctuating lake levels between approximately 11.7 and 4 ka. Over the 20th century, the areal extent of Kilimanjaro's ice fields has decreased approximately 80%, and if current climatological conditions persist, the remaining ice fields are likely to disappear between 2015 and 2020.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...