Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 205(1): 49-58, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664252

RESUMEN

Plants inhabiting open landscapes are often dispersed by ungulates and are expected to be adapted to this type of dispersal through their seed traits. To find which traits help seeds survive the passage through digestion of wild ungulates, we conducted a comprehensive feeding experiment with almost forty species of plants and three species of ungulates. We fed specified numbers of seeds to the animals, collected the dung, and germinated the dung content. We explored whether seed morphological traits and seed nutrient contents are good predictors of seed survival after passage through the ungulate digestive system. We also tested how the seed survival differed after the passage through different ungulate species. To find answers, we used GLMM with beta-binomial distribution and animal and plant species as random factor, respectively. We found that species survival and germination success were negatively correlated to seed elongation and the thickness of the seed coat. Even though phylogenetically correct GLMM did not yield significant results, when we tested species from commonly represented families, separately (legumes and grasses compared to all other species) different traits had statistically significant effects. In the case of seed elongation, the effect changed direction from negative to positive when legumes and grasses were left out. Our results suggest that seed traits enabling species survival after passage through the digestive tract are strongly phylogenetically conserved and different groups of plants evolved different ways of adapting to grazing pressure and utilize it for dispersal.


Asunto(s)
Semillas , Animales , Germinación
2.
Int J Biometeorol ; 68(4): 761-775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285109

RESUMEN

Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.


Asunto(s)
Fotoperiodo , Hojas de la Planta , Temperatura , Estaciones del Año , Hojas de la Planta/fisiología , Fenotipo , Plantas , Cambio Climático
3.
Ann Bot ; 132(2): 281-291, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37398990

RESUMEN

BACKGROUND AND AIMS: Perennial plants in seasonal climates need to optimize their carbon balance by adjusting their active season length to avoid risks of tissue loss under adverse conditions. As season length is determined by two processes, namely spring growth and senescence, it is likely to vary in response to several potentially contrasting selective forces. Here we aim to disentangle the cascade of ecological determinants of interspecific differences in season length. METHODS: We measured size trajectories in 231 species in a botanical garden. We examined correlations between their spring and autumn size changes and determined how they make up season length. We used structural equation models (SEMs) to determine how niche parameters and species traits combine in their effect on species-specific season length. KEY RESULTS: Interspecific differences in season length were mainly controlled by senescence, while spring growth was highly synchronized across species. SEMs showed that niche parameters (light and moisture) had stronger, and often trait-independent, effects compared to species traits. Several niche (light) and trait variables (plant height, clonal spreading) had opposing effects on spring growth and senescence. CONCLUSIONS: The findings indicate different drivers and potential risks in growth and senescence. The strong role of niche-based predictors implies that shifts in season length due to global change are likely to differ among habitats and will not be uniform across the whole flora.


Asunto(s)
Ecosistema , Hojas de la Planta , Estaciones del Año , Hojas de la Planta/fisiología , Clima , Árboles/fisiología
4.
New Phytol ; 235(6): 2199-2210, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35762815

RESUMEN

Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.


Asunto(s)
Cambio Climático , Reproducción , Biodiversidad , Flores , Plantas , Estaciones del Año
5.
Front Plant Sci ; 12: 790867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185951

RESUMEN

Seed persistence in the soil is crucial for population dynamics. Interspecific differences in soil seed mortality could be a mechanism that may stimulate species coexistence in herbaceous plant communities. Therefore, understanding the levels and causes of seed persistence is vital for understanding community composition and population dynamics. In this study, we evaluated the burial depth as a significant predictor of the temporal dynamics of soil seed persistence. We suppose that species differ in this temporal dynamics of soil seed persistence according to burial depth. Furthermore, we expected that burial depth would affect soil seed persistence differently concerning the species-specific type of dormancy, light, and fluctuating temperature requirements for germination. Seeds of 28 herbaceous species of calcareous grasslands were buried in the field into depths of 1, 5, and 10 cm under the soil surface. Seed viability was tested by germination and tetrazolium tests several times for three years. Species-specific seed traits-a type of dormancy, light requirements and alternating temperature requirements for germination, and longevity index-were used for disentangling the links behind species-specific differences in soil seed persistence. Our study showed differences in soil seed persistence according to the burial depth at the interspecific level. Generally, the deeper the buried seeds, the longer they stayed viable, but huge differences were found between individual species. Species-specific seed traits seem to be an essential determinant of seed persistence in the soil. Seeds of dormant species survived less and only dormant seeds stayed viable in the soil. Similarly, seeds of species without light or alternating temperature requirements for germination generally remained viable in the soil in smaller numbers. Moreover, seeds of species that require light for germination stayed viable longer in the deeper soil layers. Our results help understand the ecosystem dynamics caused by seed reproduction and highlight the importance of a detailed long-term investigation of soil seed persistence. That is essential for understanding the fundamental ecological processes and could help restore valuable calcareous grassland habitats.

6.
Front Plant Sci ; 10: 1693, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010171

RESUMEN

Various types of flat rhizoboxes aid in root visualization and tracking in experiments where the focus is upon root system growth and development. While size of the pot is known to affect experiments, nothing is known about the impact of rhizoboxes-not only their volume, but also their shape might affect root and shoot growth. Therefore, we investigated how rhizoboxes change plant biomass and root:shoot biomass partitioning. We compared biomass and root:shoot ratio of plants growing in the pots with different geometry-usual three-dimensional, cuboid plant pots and flat two-dimensional rhizoboxes about the same volume. We used two different nutritional treatments (deionized water and additional nutrients) for investigating whether the nutrient availability in the substrate changed the impact of rhizoboxes on plant growth. We used 15 species for the generalizability of our results across the phylogenetic tree. Proportional investment of plants into roots was similar in usual pots and in rhizoboxes. This pattern was stable across nutrition treatments and across species. Further, we found no differences in total biomass of plants between pot type within nutrient treatments. With added nutrients, the plants had a higher biomass and lower root:shoot ratio compared to treatments without nutrient addition. Thus, species can be safely compared when grown in the rhizoboxes; rhizoboxes did not affect root system growth comparisons among species and nutrient levels. Also, they did not affect plant growth in terms of total biomass.

7.
Ecol Evol ; 8(14): 7143-7150, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30073073

RESUMEN

Root:shoot (R:S) biomass partitioning is one of the keys to the plants' ability to compensate for limiting resources in the environment and thus to survive and succeed in competition. In adult plants, it can vary in response to many factors, such as nutrient availability in the soil or reserves in the roots from the previous season. The question remains whether, at the interspecific level, reserves in seeds can affect seedlings' R:S ratio in a similar way. Proper allocation to resource-acquiring organs is enormously important for seedlings and is likely to determine their survival and further success. Therefore, we investigated the effect of seed mass on seedling R:S biomass partitioning and its interaction with nutrient supply in the substrate. We measured seedling biomass partitioning under two different nutrient treatments after 2, 4, 6, and 12 weeks for seventeen species differing in seed mass and covering. We used phylogenetically informed analysis to determine the independent influence of seed mass on seedling biomass partitioning. We found consistently lower R:S ratios in seedlings with higher seed mass. Expectedly, R:S was also lower with higher substrate nutrient supply, but substrate nutrient supply had a bigger effect on R:S ratio for species with higher seed mass. These findings point to the importance of seed reserves for the usage of soil resources. Generally, R:S ratio decreased over time and, similarly to the effect of substrate nutrients, R:S ratio decreased faster for large-seeded species. We show that the seed mass determines the allocation patterns into new resource-acquiring organs during seedling development. Large-seeded species are more flexible in soil nutrient use. It is likely that faster development of shoots provides large-seeded species with the key advantage in asymmetric above-ground competition, and that this could constitute one of the selective factors for optimum seed mass.

8.
Talanta ; 170: 36-40, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501182

RESUMEN

We developed a simple low-cost cultivation-based microfluidic device from office-laminator foil and Parafilm for the determination of specific microorganisms in water samples. The main goal was to obtain a device that would be portable and cheap compared to common laboratory techniques testing microorganisms. This device needs only 10µL of a sample and can be easily used in terrain by a non-specialist. Moreover, we dealt with some technical aspects of the device fabrication such as low-cost lamination techniques and the use of different cultivation media.


Asunto(s)
Escherichia coli/aislamiento & purificación , Dispositivos Laboratorio en un Chip/economía , Urinálisis/instrumentación , Orina/microbiología , Costos y Análisis de Costo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...