Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 19(3): 432-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26854804

RESUMEN

Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.


Asunto(s)
Conexinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Familia-src Quinasas/fisiología , Animales , Calcio/metabolismo , Muerte Celular/fisiología , Conexinas/metabolismo , Maleato de Dizocilpina/farmacología , Magnesio/farmacología , Potenciales de la Membrana/fisiología , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
2.
Channels (Austin) ; 8(2): 131-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24418937

RESUMEN

Epiplexus cells are a population of innate immune cells in the choroid plexus of the brain ventricles. They are thought to contribute to the immune component of the blood-cerebrospinal-fluid-barrier (BCSFB). Here we have developed a novel technique for studying epiplexus cells in acutely isolated, live and intact choroid plexus. We show that epiplexus cells are potently activated by exogenous ATP, increasing their motility within the tissue. This ATP-induced chemokinesis required activation of pannexin-1 channels, which are expressed by the epithelial cells of the choroid plexus and not the epiplexus cells themselves. Furthermore, ATP acts at least in part through the P2X4 ionotropic purinergic receptor. Thus, the resident immune cells of the choroid plexus appear to be in communication with the epithelial cells through pannexin-1 channels.


Asunto(s)
Plexo Coroideo/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Quimiotaxis , Plexo Coroideo/citología , Plexo Coroideo/inmunología , Conexinas/antagonistas & inhibidores , Conexinas/genética , Humanos , Macrófagos Alveolares/citología , Macrófagos Alveolares/fisiología , Microscopía por Video , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo
3.
Acta Pharmacol Sin ; 34(1): 39-48, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22864302

RESUMEN

Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Canales Iónicos/metabolismo , Neuronas/patología , Animales , Encéfalo/metabolismo , Isquemia Encefálica/etiología , Muerte Celular , Conexinas/metabolismo , Humanos , Neuronas/metabolismo , Receptores Purinérgicos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA