Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771680

RESUMEN

Strain elastography and shear wave elastography are two commonly used methods to quantify cervical elasticity. However, the absence of stress information in strain elastography causes difficulty in comparing elasticities acquired in different sessions, and the robustness of shear wave elastography tends to be compromised by the high inhomogeneity of cervical tissue. OBJECTIVE: To overcome these limitations, we develop a quantitative cervical elastography system by adding a stress sensor to a clinically used transvaginal ultrasound imaging system. METHODS: In an imaging session, we use the ultrasound system to record the cervical deformation in B-mode images and use the stress sensor to record the probe-surface stress simultaneously. We develop a feature-tracking algorithm to quantify the deformation automatically and calculate the strain. Then we estimate the cervical Young's modulus through stress-strain linear regression. RESULTS: In phantom experiments, we demonstrate the elastography system's high accuracy (alignment with the quasi-static compression method, p-value = 0.369 > 0.05), robustness (alignment between 60°- and 90°-contact measurements, p-value = 0.638 > 0.05), repeatability (consistency of single sonographers' measurements, coefficient of variation < 0.06), and reproducibility (alignment between two sonographers' measurements, Pearson correlation coefficient = 0.981). Applying it to pregnant participants, we observe significant softening of the cervix during pregnancy (p-value < 0.001) with the cervical Young's modulus decreasing 3.95% per week. We estimate that geometric mean values of cervical Young's moduli during the first (11 to 13 weeks), second, and third trimesters are 13.07 kPa, 7.59 kPa, and 4.40 kPa, respectively. CONCLUSION: The proposed system is accurate, robust, and safe, and enables longitudinal measurements and comparisons between examiners. SIGNIFICANCE: The system applies to different ultrasound machines with minor software updates, which allows for studies of cervical softening patterns in pregnancy for larger populations, facilitating insights into conditions such as preterm birth.

2.
J Biomed Opt ; 28(11): 116002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078154

RESUMEN

Significance: Over 100 monoclonal antibodies have been approved by the U.S. Food and Drug Administration (FDA) for clinical use; however, a paucity of knowledge exists regarding the injection site behavior of these formulated therapeutics, particularly the effect of antibody, formulation, and tissue at the injection site. A deeper understanding of antibody behavior at the injection site, especially on blood oxygenation through imaging, will help design improved versions of the therapeutics for a wide range of diseases. Aim: The aim of this research is to understand the dynamics of monoclonal antibodies at the injection site as well as how the antibody itself affects the functional characteristics of the injection site [e.g., blood oxygen saturation (sO2)]. Approach: We employed triple-wavelength equipped functional photoacoustic imaging to study the dynamics of dye-labeled and unlabeled monoclonal antibodies at the site of injection in a mouse ear. We injected a near-infrared dye-labeled (and unlabeled) human IgG4 isotype control antibody into the subcutaneous space in mouse ears to analyze the injection site dynamics and quantify molecular movement, as well as its effect on local hemodynamics. Results: We performed pharmacokinetic studies of the antibody in different regions of the mouse body to show that dye labeling does not alter the pharmacokinetic characteristics of the antibody and that mouse ear is a viable model for these initial studies. We explored the movement of the antibody in the interstitial space to show that the bolus area grows by ∼300% over 24 h. We discovered that injection of the antibody transiently reduces the local sO2 levels in mice after prolonged anesthesia without affecting the total hemoglobin content and oxygen extraction fraction. Conclusions: This finding on local oxygen saturation opens a new avenue of study on the functional effects of monoclonal antibody injections. We also show the suitability of the mouse ear model to study antibody dynamics through high-resolution imaging techniques. We quantified the movement of antibodies at the injection site caused by the interstitial fluid, which could be helpful for designing antibodies with tailored absorption speeds in the future.


Asunto(s)
Anestesia , Técnicas Fotoacústicas , Ratones , Humanos , Animales , Anticuerpos Monoclonales , Tejido Subcutáneo , Inmunoglobulina G
3.
Nat Biomed Eng ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036618

RESUMEN

Techniques for imaging haemodynamics use ionizing radiation or contrast agents or are limited by imaging depth (within approximately 1 mm), complex and expensive data-acquisition systems, or low imaging speeds, system complexity or cost. Here we show that ultrafast volumetric photoacoustic imaging of haemodynamics in the human body at up to 1 kHz can be achieved using a single laser pulse and a single element functioning as 6,400 virtual detectors. The technique, which does not require recalibration for different objects or during long-term operation, enables the longitudinal volumetric imaging of haemodynamics in vasculature a few millimetres below the skin's surface. We demonstrate this technique in vessels in the feet of healthy human volunteers by capturing haemodynamic changes in response to vascular occlusion. Single-shot volumetric photoacoustic imaging using a single-element detector may facilitate the early detection and monitoring of peripheral vascular diseases and may be advantageous for use in biometrics and point-of-care testing.

4.
ArXiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426449

RESUMEN

Photoacoustic computed tomography (PACT) is emerging as a new technique for functional brain imaging, primarily due to its capabilities in label-free hemodynamic imaging. Despite its potential, the transcranial application of PACT has encountered hurdles, such as acoustic attenuations and distortions by the skull and limited light penetration through the skull. To overcome these challenges, we have engineered a PACT system that features a densely packed hemispherical ultrasonic transducer array with 3072 channels, operating at a central frequency of 1 MHz. This system allows for single-shot 3D imaging at a rate equal to the laser repetition rate, such as 20 Hz. We have achieved a single-shot light penetration depth of approximately 9 cm in chicken breast tissue utilizing a 750 nm laser (withstanding 3295-fold light attenuation and still retaining an SNR of 74) and successfully performed transcranial imaging through an ex vivo human skull using a 1064 nm laser. Moreover, we have proven the capacity of our system to perform single-shot 3D PACT imaging in both tissue phantoms and human subjects. These results suggest that our PACT system is poised to unlock potential for real-time, in vivo transcranial functional imaging in humans.

5.
Opt Lett ; 48(9): 2417-2420, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126287

RESUMEN

Curvilinear endocavity ultrasound images capture a wide field of view with a miniature probe. In adapting photoacoustic imaging (PAI) to work with such ultrasound systems, light delivery is challenged by the trade-off between image quality and laser safety concerns. Here, we present two novel, to the best of our knowledge, designs based on cylindrical lenses that are optimized for transvaginal PAI B-scan imaging. Our simulation and experimental results demonstrate that, compared to conventional light delivery methods for PAI imaging, the proposed designs are safer for higher pulse energies and provide deeper imaging and a wider lateral field of view. The proposed designs could also improve the performance of endoscopic co-registered ultrasound/photoacoustic imaging in other clinical applications.

6.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993341

RESUMEN

Imaging hemodynamics is crucial for the diagnosis, treatment, and prevention of vascular diseases. However, current imaging techniques are limited due to the use of ionizing radiation or contrast agents, short penetration depth, or complex and expensive data acquisition systems. Photoacoustic tomography shows promise as a solution to these issues. However, existing photoacoustic tomography methods collect signals either sequentially or through numerous detector elements, leading to either low imaging speed or high system complexity and cost. To address these issues, here we introduce a method to capture a 3D photoacoustic image of vasculature using a single laser pulse and a single-element detector that functions as 6,400 virtual ones. Our method enables ultrafast volumetric imaging of hemodynamics in the human body at up to 1 kHz and requires only a single calibration for different objects and for long-term operations. We demonstrate 3D imaging of hemodynamics at depth in humans and small animals, capturing the variability in blood flow speeds. This concept can inspire other imaging technologies and find applications such as home-care monitoring, biometrics, point-of-care testing, and wearable monitoring.

7.
Nat Commun ; 13(1): 5247, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068212

RESUMEN

Many ultrafast phenomena in biology and physics are fundamental to our scientific understanding but have not yet been visualized owing to the extreme speed and sensitivity requirements in imaging modalities. Two examples are the propagation of passive current flows through myelinated axons and electromagnetic pulses through dielectrics, which are both key to information processing in living organisms and electronic devices. Here, we demonstrate differentially enhanced compressed ultrafast photography (Diff-CUP) to directly visualize propagations of passive current flows at approximately 100 m/s along internodes, i.e., continuous myelinated axons between nodes of Ranvier, from Xenopus laevis sciatic nerves and of electromagnetic pulses at approximately 5 × 107 m/s through lithium niobate. The spatiotemporal dynamics of both propagation processes are consistent with the results from computational models, demonstrating that Diff-CUP can span these two extreme timescales while maintaining high phase sensitivity. With its ultrahigh speed (picosecond resolution), high sensitivity, and noninvasiveness, Diff-CUP provides a powerful tool for investigating ultrafast biological and physical phenomena.


Asunto(s)
Axones , Vaina de Mielina , Animales , Axones/fisiología , Fenómenos Electromagnéticos , Vaina de Mielina/fisiología , Nódulos de Ranvier/fisiología , Nervio Ciático , Xenopus laevis
8.
Adv Sci (Weinh) ; 9(28): e2202907, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975459

RESUMEN

Long-duration in vivo simultaneous imaging of multiple anatomical structures is useful for understanding physiological aspects of diseases, informative for molecular optimization in preclinical models, and has potential applications in surgical settings to improve clinical outcomes. Previous studies involving simultaneous imaging of multiple anatomical structures, for example, blood and lymphatic vessels as well as peripheral nerves and sebaceous glands, have used genetically engineered mice, which require expensive and time-consuming methods. Here, an IgG4 isotype control antibody is labeled with a near-infrared dye and injected into a mouse ear to enable simultaneous visualization of blood and lymphatic vessels, peripheral nerves, and sebaceous glands for up to 3 h using photoacoustic microscopy. For multiple anatomical structure imaging, peripheral nerves and sebaceous glands are imaged inside the injected dye-labeled antibody mass while the lymphatic vessels are visualized outside the mass. The efficacy of the contrast agent to label and localize deep medial lymphatic vessels and lymph nodes using photoacoustic computed tomography is demonstrated. The capability of a single injectable contrast agent to image multiple structures for several hours will potentially improve preclinical therapeutic optimization, shorten discovery timelines, and enable clinical treatments.


Asunto(s)
Vasos Linfáticos , Técnicas Fotoacústicas , Animales , Medios de Contraste/química , Diagnóstico por Imagen , Inmunoglobulina G , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/patología , Ratones , Técnicas Fotoacústicas/métodos
9.
Mol Metab ; 62: 101522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671972

RESUMEN

OBJECTIVE: Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model. METHODS: We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears. We mathematically modeled the experimental data to calculate the absorption rate constants and diffusion coefficients. We studied the pharmacokinetics of the unlabeled insulin lispro in both the Humalog and Lyumjev formulations as well as a formulation lacking both the zinc and phenolic preservative in pigs. The association state of insulin lispro in each of the formulations was characterized using SV-AUC and NMR spectroscopy. RESULTS: Through experiments using murine and swine models, we show that the hexamer dissociation rate of insulin lispro is not the absorption rate-limiting step. We demonstrated that the excipients in the Lyumjev formulation produce local tissue expansion and speed both insulin diffusion and microvascular absorption. We also show that the diffusion of insulin lispro at the injection site drives its initial absorption; however, the rate at which the insulin lispro crosses the blood vessels is its overall absorption rate-limiting step. CONCLUSIONS: This study provides insights into injection site dynamics of insulin lispro and the impact of formulation excipients. It also demonstrates photoacoustic microscopy as a promising tool for studying protein therapeutics. The results from this study address critical questions around the subcutaneous behavior of insulin lispro and the formulation excipients, which could be useful to make faster and better controlled insulin formulations in the future.


Asunto(s)
Insulina de Acción Corta , Técnicas Fotoacústicas , Animales , Excipientes , Hipoglucemiantes/química , Insulina , Insulina Lispro , Ratones , Porcinos
10.
Nat Biomed Eng ; 6(5): 584-592, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34059809

RESUMEN

Blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging of the human brain requires bulky equipment for the generation of magnetic fields. Photoacoustic computed tomography obviates the need for magnetic fields by using light and sound to measure deoxyhaemoglobin and oxyhaemoglobin concentrations to then quantify oxygen saturation and blood volumes. Yet, the available imaging speeds, fields of view (FOV), sensitivities and penetration depths have been insufficient for functional imaging of the human brain. Here, we show that massively parallel ultrasonic transducers arranged hemispherically around the human head can produce tomographic images of the brain with a 10-cm-diameter FOV and spatial and temporal resolutions of 350 µm and 2 s, respectively. In patients who had a hemicraniectomy, a comparison of functional photoacoustic computed tomography and 7 T BOLD functional magnetic resonance imaging showed a strong spatial correspondence in the same FOV and a high temporal correlation between BOLD signals and photoacoustic signals, with the latter enabling faster detection of functional activation. Our findings establish the use of photoacoustic computed tomography for human brain imaging.


Asunto(s)
Tomografía Computarizada por Rayos X , Transductores , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía , Tomografía Computarizada por Rayos X/métodos
12.
Materials (Basel) ; 14(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34639909

RESUMEN

An Se-derivative of amidoxime was synthesized for the first time as a result of the reaction of oxidative polycondensation of N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide with SeO2: its elementary units are linked to each other due to the formation of strong diselenide bridges. The element composition of the material was established, and the structure of the elementary unit was suggested. The sorption-selective properties were evaluated, and it was found that the adsorbent can be used for the selective recovery of U (VI) from liquid media with a pH of 6-9. The effect of some anions and cations on the efficiency of recovery of U (VI) was estimated. Composite materials were fabricated, in which silica gel with a content of 35, 50, and 65 wt.% was used as a matrix to be applied in sorption columns. The maximum values of adsorption of U (VI) calculated using the Langmuir equation were 620-760 mg g-1 and 370 mg g-1 for the composite and non-composite adsorbents, respectively. The increase in the kinetic parameters of adsorption in comparison with those of the non-porous material was revealed, along with the increase in the specific surface area of the composite adsorbents. In particular, the maximum sorption capacity and the rate of absorption of uranium from the solution increased two-fold.

13.
Nat Commun ; 12(1): 882, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563996

RESUMEN

Photoacoustic computed tomography (PACT) has generated increasing interest for uses in preclinical research and clinical translation. However, the imaging depth, speed, and quality of existing PACT systems have previously limited the potential applications of this technology. To overcome these issues, we developed a three-dimensional photoacoustic computed tomography (3D-PACT) system that features large imaging depth, scalable field of view with isotropic spatial resolution, high imaging speed, and superior image quality. 3D-PACT allows for multipurpose imaging to reveal detailed angiographic information in biological tissues ranging from the rodent brain to the human breast. In the rat brain, we visualize whole brain vasculatures and hemodynamics. In the human breast, an in vivo imaging depth of 4 cm is achieved by scanning the breast within a single breath hold of 10 s. Here, we introduce the 3D-PACT system to provide a unique tool for preclinical research and an appealing prototype for clinical translation.


Asunto(s)
Imagenología Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Tomografía Computarizada por Rayos X/métodos , Angiografía , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mama/irrigación sanguínea , Mama/diagnóstico por imagen , Diseño de Equipo , Femenino , Neuroimagen Funcional , Humanos , Imagenología Tridimensional/instrumentación , Técnicas Fotoacústicas/instrumentación , Ratas , Tomografía Computarizada por Rayos X/instrumentación
14.
J Biomed Opt ; 25(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118344

RESUMEN

SIGNIFICANCE: Mid-infrared (IR) imaging based on the vibrational transition of biomolecules provides good chemical-specific contrast in label-free imaging of biology tissues, making it a popular tool in both biomedical studies and clinical applications. However, the current technology typically requires thin and dried or extremely flat samples, whose complicated processing limits this technology's broader translation. AIM: To address this issue, we report mid-IR photoacoustic microscopy (PAM), which can readily work with fresh and thick tissue samples, even when they have rough surfaces. APPROACH: We developed a transmission-mode mid-IR PAM system employing an optical parametric oscillation laser operating in the wavelength range from 2.5 to 12 µm. Due to its high sensitivity to optical absorption and the low ultrasonic attenuation of tissue, our PAM achieved greater probing depth than Fourier transform IR spectroscopy, thus enabling imaging fresh and thick tissue samples with rough surfaces. RESULTS: In our spectroscopy study, the CH2 symmetric stretching at 2850 cm - 1 (3508 nm) was found to be an excellent source of endogenous contrast for lipids. At this wavenumber, we demonstrated label-free imaging of the lipid composition in fresh, manually cut, and unprocessed tissue sections of up to 3-mm thickness. CONCLUSIONS: Our technology requires no time-consuming sample preparation procedure and has great potential in both fast clinical histological analysis and fundamental biological studies.


Asunto(s)
Lípidos , Microscopía , Pruebas Diagnósticas de Rutina , Rayos Láser , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Biomed Opt ; 25(7): 1-8, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32648387

RESUMEN

SIGNIFICANCE: Photoacoustic (PA) tomography has demonstrated versatile biomedical applications. However, an array-based PA computed tomography (PACT) system is complex and expensive, whereas a single-element detector-based scanning PA system is too slow to detect some fast biological dynamics in vivo. New PA imaging methods are sought after. AIM: To overcome these limitations, we developed photoacoustic topography through an ergodic relay (PATER), a novel high-speed imaging system with a single-element detector. APPROACH: PATER images widefield PA signals encoded by the acoustic ergodic relay with a single-laser shot. RESULTS: We applied PATER in vivo to monitor changes in oxygen saturation in a mouse brain and also to demonstrate high-speed matching of vascular patterns for biometric authentication. CONCLUSIONS: PATER has achieved a high-speed temporal resolution over a large field of view. Our results suggest that PATER is a promising and economical alternative to PACT for fast imaging.


Asunto(s)
Técnicas Fotoacústicas , Acústica , Animales , Pruebas Diagnósticas de Rutina , Ratones , Análisis Espectral , Tomografía Computarizada por Rayos X
16.
J Biomed Opt ; 25(6): 1-11, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32529816

RESUMEN

SIGNIFICANCE: The initial dip in hemoglobin-oxygenation response to stimulations is a spatially confined endogenous indicator that is faster than the blood flow response, making it a desired label-free contrast to map the neural activity. A fundamental question is whether a single-impulse stimulus, much shorter than the response delay, could produce an observable initial dip without repeated stimulation. AIM: To answer this question, we report high-speed functional photoacoustic (PA) microscopy to investigate the initial dip in mouse brains. APPROACH: We developed a Raman-laser-based dual-wavelength functional PA microscope that can image capillary-level blood oxygenation at a 1-MHz one-dimensional imaging rate. This technology was applied to monitor the hemodynamics of mouse cerebral vasculature after applying an impulse stimulus to the forepaw. RESULTS: We observed a transient initial dip in cerebral microvessels starting as early as 0.13 s after the onset of the stimulus. The initial dip and the subsequent overshoot manifested a wave pattern propagating across different microvascular compartments. CONCLUSIONS: We quantified both spatially and temporally the single-impulse-stimulated microvascular hemodynamics in mouse brains at single-vessel resolution. Fast label-free imaging of single-impulse response holds promise for real-time brain-computer interfaces.


Asunto(s)
Interfaces Cerebro-Computador , Técnicas Fotoacústicas , Animales , Hemodinámica , Hemoglobinas , Ratones , Microscopía
17.
Nat Photonics ; 14(3): 164-170, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34178097

RESUMEN

Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice in vivo. Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain in vivo, which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.

18.
Nat Photonics ; 13: 609-615, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31440304

RESUMEN

Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong MIR absorption of water ubiquitous in fresh biological samples results in high background and low contrast. To overcome these limitations, we propose a method that employs photoacoustic detection highly localized with a pulsed ultraviolet (UV) laser on the basis of the Grüneisen relaxation effect. For cultured cells, our method achieves water-background suppressed MIR imaging of lipids and proteins at UV resolution, at least an order of magnitude finer than the MIR diffraction limits. Label-free histology using this method is also demonstrated in thick brain slices. Our approach provides convenient high-resolution and high-contrast MIR imaging, which can benefit diagnosis of fresh biological samples.

19.
J Biomed Opt ; 23(12): 1-6, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30520275

RESUMEN

Premature cervical remodeling is a critical precursor of spontaneous preterm birth, and the remodeling process is characterized by an increase in tissue hydration. Nevertheless, current clinical measurements of cervical remodeling are subjective and detect only late events, such as cervical effacement and dilation. Here, we present a photoacoustic endoscope that can quantify tissue hydration by measuring near-infrared cervical spectra. We quantify the water contents of tissue-mimicking hydrogel phantoms as an analog of cervical connective tissue. Applying this method to pregnant women in vivo, we observed an increase in the water content of the cervix throughout pregnancy. The application of this technique in maternal healthcare may advance our understanding of cervical remodeling and provide a sensitive method for predicting preterm birth.


Asunto(s)
Cuello del Útero/diagnóstico por imagen , Tejido Conectivo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Técnicas Fotoacústicas/métodos , Espectroscopía Infrarroja Corta/métodos , Adulto , Diseño de Equipo , Femenino , Humanos , Fantasmas de Imagen , Técnicas Fotoacústicas/instrumentación , Embarazo , Espectroscopía Infrarroja Corta/instrumentación
20.
J Biomed Opt ; 23(12): 1-4, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30520276

RESUMEN

Photoacoustic endoscopy offers in vivo examination of the visceral tissue using endogenous contrast, but its typical B-scan rate is ∼10 Hz, restricted by the speed of the scanning unit and the laser pulse repetition rate. Here, we present a transvaginal fast-scanning optical-resolution photoacoustic endoscope with a 250-Hz B-scan rate over a 3-mm scanning range. Using this modality, we not only illustrated the morphological differences of vasculatures among the human ectocervix, uterine body, and sublingual mucosa but also showed the longitudinal and cross-sectional differences of cervical vasculatures in pregnant women. This technology is promising for screening the visceral pathological changes associated with angiogenesis.


Asunto(s)
Endoscopía/instrumentación , Técnicas Fotoacústicas , Adulto , Cuello del Útero/diagnóstico por imagen , Diseño de Equipo , Femenino , Humanos , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/métodos , Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...