Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chromosoma ; 132(4): 329-342, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001396

RESUMEN

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.


Asunto(s)
Pintura Cromosómica , Ranidae , Animales , Rana esculenta/genética , Ranidae/genética , Cariotipificación , Anuros/genética , Cariotipo
2.
Epigenetics Chromatin ; 16(1): 24, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322523

RESUMEN

BACKGROUND: The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mainly to transcriptionally active and repressive chromatin. It remains unknown how the compartmentalization of the genome changes in growing oocytes of animals with hypertranscriptional type of oogenesis. Such oocytes are characterized by highly elongated chromosomes, called lampbrush chromosomes, which acquire a typical chromomere-loop appearance, representing one of the classical model systems for exploring the structural and functional organization of chromatin domains. RESULTS: Here, we compared the distribution of A/B compartments in chicken somatic cells with chromatin domains in lampbrush chromosomes. We found that in lampbrush chromosomes, the extended chromatin domains, restricted by compartment boundaries in somatic cells, disintegrate into individual chromomeres. Next, we performed FISH-mapping of the genomic loci, which belong to A or B chromatin compartments as well as to A/B compartment transition regions in embryonic fibroblasts on isolated lampbrush chromosomes. We found, that in chicken lampbrush chromosomes, clusters of dense compact chromomeres bearing short lateral loops and enriched with repressive epigenetic modifications generally correspond to constitutive B compartments in somatic cells. A compartments align with lampbrush chromosome segments with smaller, less compact chromomeres, longer lateral loops, and a higher transcriptional status. Clusters of small loose chromomeres with relatively long lateral loops show no obvious correspondence with either A or B compartment identity. Some genes belonging to facultative B (sub-) compartments can be tissue-specifically transcribed during oogenesis, forming distinct lateral loops. CONCLUSIONS: Here, we established a correspondence between the A/B compartments in somatic interphase nucleus and chromatin segments in giant lampbrush chromosomes from diplotene stage oocytes. The chromomere-loop structure of the genomic regions corresponding to interphase A and B compartments reveals the difference in how they are organized at the level of chromatin domains. The results obtained also suggest that gene-poor regions tend to be packed into chromomeres.


Asunto(s)
Cromatina , Cromosomas , Animales , Cromatina/genética , Cromosomas/genética , Núcleo Celular , Pollos , Oocitos
3.
Chromosoma ; 131(4): 207-223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36031655

RESUMEN

In diplotene oocyte nuclei of all vertebrate species, except mammals, chromosomes lack interchromosomal contacts and chromatin is linearly compartmentalized into distinct chromomere-loop complexes forming lampbrush chromosomes. However, the mechanisms underlying the formation of chromomere-loop complexes remain unexplored. Here we aimed to compare somatic topologically associating domains (TADs), recently identified in chicken embryonic fibroblasts, with chromomere-loop complexes in lampbrush meiotic chromosomes. By measuring 3D-distances and colocalization between linear equidistantly located genomic loci, positioned within one TAD or separated by a TAD border, we confirmed the presence of predicted TADs in chicken embryonic fibroblast nuclei. Using three-colored FISH with BAC probes, we mapped equidistant genomic regions included in several sequential somatic TADs on isolated chicken lampbrush chromosomes. Eight genomic regions, each comprising two or three somatic TADs, were mapped to non-overlapping neighboring lampbrush chromatin domains - lateral loops, chromomeres, or chromomere-loop complexes. Genomic loci from the neighboring somatic TADs could localize in one lampbrush chromomere-loop complex, while genomic loci belonging to the same somatic TAD could be localized in neighboring lampbrush chromomere-loop domains. In addition, FISH-mapping of BAC probes to the nascent transcripts on the lateral loops indicates transcription of at least 17 protein-coding genes and 2 non-coding RNA genes during the lampbrush stage of chicken oogenesis, including genes involved in oocyte maturation and early embryo development.


Asunto(s)
Profase Meiótica I , Oocitos , Animales , Embrión de Pollo , Oogénesis/genética , Genómica , Pollos/genética , Cromatina/genética , Mamíferos
4.
Front Cell Dev Biol ; 9: 753097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805161

RESUMEN

The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.

5.
Front Genet ; 11: 57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127797

RESUMEN

Giant lampbrush chromosomes (LBCs) typical for growing oocytes of various animal species are characterized by a specific chromomere-loop appearance and massive transcription. Chromomeres represent universal units of chromatin packaging at LBC stage. While quite good progress has been made in investigation of LBCs structure and function, chromomere organization still remains poorly understood. To extend our knowledge on chromomere organization, we applied microdissection to chicken LBCs. In particular, 31 and 5 individual chromomeres were dissected one by one along the macrochromosome 4 and one microchromosome, respectively. The data on genomic context of individual chromomeres was obtained by high-throughput sequencing of the corresponding chromomere DNA. Alignment of adjacent chromomeres to chicken genome assembly provided information on chromomeres size and genomic boarders, indicating that prominent marker chromomeres are about 4-5 Mb in size, while common chromomeres of 1.5-3.5 Mb. Analysis of genomic features showed that the majority of chromomere-loop complexes combine gene-dense and gene-poor regions, while massive loopless DAPI-positive chromomeres lack genes and are remarkably enriched with different repetitive elements. Finally, dissected LBC chromomeres were compared with chromatin domains (topologically associated domains [TADs] and A/B-compartments), earlier identified by Hi-C technique in interphase nucleus of chicken embryonic fibroblasts. Generally, the results obtained suggest that chromomeres of LBCs do not correspond unambiguously to any type of well-established spatial domains of interphase nucleus in chicken somatic cells.

6.
Nucleic Acids Res ; 47(2): 648-665, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30418618

RESUMEN

How chromosomes are folded, spatially organized and regulated in three dimensions inside the cell nucleus are among the longest standing questions in cell biology. Genome-wide chromosome conformation capture (Hi-C) technique allowed identifying and characterizing spatial chromatin compartments in several mammalian species. Here, we present the first genome-wide analysis of chromatin interactions in chicken embryonic fibroblasts (CEF) and adult erythrocytes. We showed that genome of CEF is partitioned into topologically associated domains (TADs), distributed in accordance with gene density, transcriptional activity and CTCF-binding sites. In contrast to mammals, where all examined somatic cell types display relatively similar spatial organization of genome, chicken erythrocytes strongly differ from fibroblasts, showing pronounced A- and B- compartments, absence of typical TADs and formation of long-range chromatin interactions previously observed on mitotic chromosomes. Comparing mammalian and chicken genome architectures, we provide evidence highlighting evolutionary role of chicken TADs and their significance in genome activity and regulation.


Asunto(s)
Pollos/genética , Cromatina/ultraestructura , Eritrocitos/ultraestructura , Evolución Molecular , Animales , Núcleo Celular/genética , Fibroblastos/ultraestructura , Genoma
7.
Chromosome Res ; 27(3): 253-270, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30565005

RESUMEN

Chromosomes of Japanese quail (Coturnix coturnix japonica, 2n=78), a galliform domestic species closely related to chicken, possess multiple heterochromatic segments. Due to the difficulties in careful analysis of such heterochromatic regions, there is a lack of data on their DNA composition, epigenetic status, as well as spatial distribution in interphase nucleus. In the present study, we applied giant lampbrush chromosome (LBC) microdissection for high-resolution analysis of quail centromeric regions of macrochromosomes and polymorphic short arms of submetacentric microchromosomes. FISH with the dissected material on mitotic and meiotic chromosomes indicated that in contrast to centromeres of chicken macrochromosomes, which are known to harbor chromosome-specific and, in some cases, tandem repeat-free sequences, centromeres of quail macroautosomes (CCO1-CCO11) have canonical organization. CCO1-CCO11 centromeres possess massive blocks of common DNA repeats demonstrating transcriptional activity at LBC stage. These repeats seem to have been subjected to chromosome size-correlated homogenization previously described primarily for avian microchromosomes. In addition, comparative FISH on chicken chromosomes supported the previous data on centromere repositioning events during galliform karyotype evolution. In interphase nucleus of different cell types, repetitive elements specific for microchromosome short arms constitute the material of prominent centrally located chromocenters enriched with markers of constitutive heterochromatin and rimmed with clusters of microchromosomal centromeric BglII-repeat. Thus, clustering of such repeats is responsible for the peculiar architecture of quail interphase nucleus. In contrast, centromere repeats of the largest macrochromosomes (CCO1 and CCO2) are predominantly localized in perinuclear heterochromatin. The possible involvement of the isolated repeats in radial genome organization is discussed.


Asunto(s)
Núcleo Celular/genética , Centrómero/genética , Cromosomas/genética , Heterocromatina/genética , Interfase/genética , Animales , Pollos , Mapeo Cromosómico , Citogenética , Hibridación Fluorescente in Situ , Japón , Codorniz , Secuencias Repetitivas de Ácidos Nucleicos
8.
Chromosome Res ; 23(3): 625-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26316311

RESUMEN

Tandem repeats belong to a class of genomic repetitive elements that form arrays of head-to-tail monomers. Due to technical difficulties in sequencing and assembly of large tandem repeat arrays, it remains largely unknown by which mechanisms tandem-repeat-containing regions aid in maintenance of ordered radial genome organization during interphase. Here we analyzed spatial distribution of several types of tandem repeats in interphase nuclei of chicken MDCC-MSB1 cells and somatic tissues relative to heterochromatin compartments and nuclear center. We showed that telomere and subtelomere repeats generally localize at the nuclear or chromocenters periphery. A tandem repeat known as CNM, typical for centromere regions of gene-dense microchromosomes, forms interchromosome clusters and occupies DAPI-positive chromocenters that appear predominantly within the nuclear interior. In contrast, centromere-specific tandem repeats of the majority of gene-poor macrochromosomes are embedded into the peripheral layer of heterochromatin. Chicken chromocenters rarely comprise centromere sequences of both macro- and microchromosomes, whose territories localize in different radial nuclear zones. Possible mechanisms of observed tandem repeats positioning and its implication in highly ordered arrangement of chromosome territories in chicken interphase nucleus are discussed.


Asunto(s)
Núcleo Celular/genética , Pollos/genética , Interfase/genética , Secuencias Repetidas en Tándem , Animales , Línea Celular , Centrómero/genética , Cromosomas , Genoma , Genómica , Heterocromatina/genética , Hibridación Fluorescente in Situ , Telómero/genética
9.
Nucleus ; 3(3): 300-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22572951

RESUMEN

Actin, which is normally depleted in the nuclei of somatic cells, accumulates in high amounts in giant nuclei of amphibian oocytes. The supramolecular organization and functions of this nuclear pool of actin in growing vertebrate oocyte are controversial. Here, we investigated the role of nuclear actin in the maintenance of the spatial architecture of intranuclear structures in avian and amphibian growing oocytes. A meshwork of filamentous actin was not detected in freshly isolated or fixed oocyte nuclei of Xenopus, chicken or quail. We found that the actin meshwork inside the oocyte nucleus could be induced by phalloidin treatment. Actin polymerization is demonstrated to be required to stabilize the specific spatial organization of nuclear structures in avian and amphibian growing oocytes. In experiments with the actin depolymerizing drugs cytochalasin D and latrunculin A, we showed that disassembly of nuclear actin polymers led to chromosome condensation and their transportation to a limited space within the oocyte nucleus. Experimentally induced "collapsing" of chromosomes and nuclear bodies, together with global inhibition of transcription, strongly resembled the process of karyosphere formation during oocyte growth.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Núcleo Celular/efectos de los fármacos , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Cromosomas/metabolismo , Citocalasina D/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Faloidina/farmacología , Codorniz/genética , Codorniz/crecimiento & desarrollo , Codorniz/metabolismo , Tiazolidinas/farmacología , Transcripción Genética , Xenopus/genética , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo
10.
Chromosome Res ; 20(8): 979-94, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23318709

RESUMEN

Chromosome architecture and assorted nuclear compartments play an essential role in RNA transcription and processing. Growing vertebrate oocytes represent an advantageous model to study the principles of nuclear structure and function. In this article, the data on three-dimensional (3D) organisation of intact and non-deformed oocyte nuclei (germinal vesicles) in four species of birds (domestic chicken, Japanese quail, rock pigeon and chaffinch) obtained by confocal laser scanning microscopy are presented. The nucleus of the growing avian oocyte has an unusual structure of RNA processing machinery. Germinal vesicles from any of the avian species studied, with the exception of the rock pigeon, are characterized by absence of extrachromosomal RNA-enriched nuclear bodies including Cajal bodies, histone locus bodies and interchromatin granule clusters. The absence of Cajal bodies and histone locus bodies in chicken oocytes correlated with the inactivation of nucleolus organizer and clustered histone genes. Splicing factors such as SR-protein SC35 accumulated in chromosome-associated domains that were classified as complex loops (terminal giant and lumpy loops). Formation of such depot in avian oocyte nuclei is supposed to be nucleated by transcripts of non-coding tandem repeats. The results obtained strongly support a model of RNA-mediated nuclear domains formation.


Asunto(s)
Núcleo Celular/genética , Oocitos/crecimiento & desarrollo , ARN/genética , Animales , Aves/genética , Núcleo Celular/metabolismo , Cromosomas/genética , Cromosomas/ultraestructura , Cuerpos Enrollados/genética , Cuerpos Enrollados/metabolismo , Femenino , Sitios Genéticos , Histonas/química , Histonas/genética , Imagenología Tridimensional , Hibridación Fluorescente in Situ , Microscopía Confocal , Familia de Multigenes , Oocitos/citología , ARN/metabolismo , Empalme del ARN , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...