Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Iran J Pharm Res ; 22(1): e137839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148889

RESUMEN

In the present work, the chemical composition of extract fractions of the Atropa belladonna plant growing in the north of Iran was investigated by HPTLC, HPLC, and GC-MS. Based on HPLC results, atropine, and scopolamine were found to be higher in the fruit and leaf extracts than in other parts of the plant. The comparative GC-MS analysis showed that diacetone alcohol, mesityl oxide, palmitic acid, and linoleic acid were the major bioactive components in the root, stem, leaf, and fruit extracts, respectively. Leaf extract showed the best antioxidant activity in the DPPH test. The antibacterial activity of fractional extracts was determined against Pseudomonas aeruginosa using the MIC method, and the fruit and leaf extracts exhibited the best antibacterial activities. The leaf extract was embedded into nanofibers by electrospinning technique, and its antibacterial activity was determined against Pseudomonas aeruginosa. The morphology and mechanical properties of the nanofibers were studied with SEM, contact angle, and tensile analysis, showing ultrafine fibers with uniform morphology.

2.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807257

RESUMEN

In this study, we used density functional theory (DFT) and natural bond orbital (NBO) analysis to determine the structural, electronic, reactivity, and conformational features of 2,5,5-trimethyl-1,3,2-di-heteroatom (X) phosphinane-2-sulfide derivatives (X = O (compound 1), S (compound 2), and Se (compound 3)). We discovered that the features improve dramatically at 6-31G** and B3LYP/6-311+G** levels. The level of theory for the molecular structure was optimized first, followed by the frontier molecular orbital theory development to assess molecular stability and reactivity. Molecular orbital calculations, such as the HOMO-LUMO energy gap and the mapping of molecular electrostatic potential surfaces (MEP), were performed similarly to DFT calculations. In addition, the electrostatic potential of the molecule was used to map the electron density on a surface. In addition to revealing molecules' size and shape distribution, this study also shows the sites on the surface where molecules are most chemically reactive.


Asunto(s)
Teoría Cuántica , Espectrometría Raman , Electrónica , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Sulfuros , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA