Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(32): 6749-6763, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37531463

RESUMEN

Beyond the now well-known strong catalyst-support interactions reported for ceria-supported platinum catalysts, intermetallic Ce-Pt compounds exhibit fascinating properties such as heavy fermion behavior and magnetic instability. Small heterometallic Ce-Pt clusters, which can provide insights into the local features that govern bulk phenomena, have been less explored. Herein, the anion photoelectron spectra of three small mixed Ce-Pt clusters, Ce2OPt-, Ce2Pt-, and Ce3Pt-, are presented and interpreted with supporting density functional theory calculations. The calculations, which are readily reconciled with the experimental spectra, suggest the presence of numerous close-lying spin states, including states in which the Ce 4f electrons are ferromagnetically coupled or antiferromagnetically coupled. The Pt center is consistently in a nominal -2 charge state in all cluster neutrals and anions, giving the Ce-Pt bond ionic character. Ce-Pt bonds are stronger than Ce-Ce bonds, and the O atom in Ce2OPt- coordinates only with the Ce centers. The energy of the singly occupied Ce-local 4f orbitals relative to the Pt-local orbitals changes with cluster composition. Discussion of the results includes potential implications for Ce-rich intermetallic materials.

2.
J Phys Chem A ; 125(45): 9892-9903, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730978

RESUMEN

Evidence of strong photoelectron-valence electron (PEVE) interactions has been observed in the anion photoelectron (PE) spectra of several lanthanide suboxide clusters, which are exceptionally complex from an electronic structure standpoint and are strongly correlated systems. The PE spectrum of Gd2O-, which should have relatively simple electronic structure because of its half-filled 4f subshell, exhibits numerous electronic transitions. The electron affinity determined from the spectrum is 0.26 eV. The intensities of transitions to excited states increase relative to the lower-energy states with lower photon energy, which is consistent with shakeup transitions driven by time-dependent electron-neutral interactions. A group of intense spectral features that lie between electron binding energies of 0.7 and 2.3 eV are assigned to transitions involving detachment of an electron from outer-valence σu and σg orbitals that have large Gd 6s contributions. The spectra show parallel transition manifolds in general, which is consistent with detachment from these orbitals. However, several distinct perpendicular transitions are observed adjacent to several of the vertical transitions. A possible explanation invoking interaction between the ejected electron and the high-spin neutral is proposed. Specifically, the angular momentum of electrons ejected from σu or σg orbitals, which is l = 1, can switch to l = 0, 2 with an associated change in the Ms of the remnant neutral, which is spin-orbit coupling between a free electron and the spin of a neutral.

3.
J Chem Phys ; 154(20): 200901, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34241180

RESUMEN

Small clusters have captured the imaginations of experimentalists and theorists alike for decades. In addition to providing insight into the evolution of properties between the atomic or molecular limits and the bulk, small clusters have revealed a myriad of fascinating properties that make them interesting in their own right. This perspective reviews how the application of anion photoelectron (PE) spectroscopy, typically coupled with supporting calculations, is particularly well-suited to probing the molecular and electronic structure of small clusters. Clusters provide a powerful platform for the study of the properties of local phenomena (e.g., dopants or defect sites in heterogeneous catalysts), the evolution of the band structure and the transition from semiconductor to metallic behavior in metal clusters, control of electronic structures of clusters through electron donating or withdrawing ligands, and the control of magnetic properties by interactions between the photoelectron and remnant neutral states, among other important topics of fundamental interest. This perspective revisits historical, groundbreaking anion PE spectroscopic finding and details more recent advances and insight gleaned from the PE spectra of small covalently or ionically bound clusters. The properties of the broad range of systems studied are uniquely small-cluster like in that incremental size differences are associated with striking changes in stability, electronic structures, and symmetry, but they can also be readily related to larger or bulk species in a broader range of materials and applications.

4.
J Phys Chem A ; 125(3): 857-866, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33463153

RESUMEN

Photoelectron spectra of Gd2O2- obtained with photon energies ranging from 2.033 to 3.495 eV exhibit numerous close-lying neutral states with photon-energy-dependent relative intensities. Transitions to these states, which fall within the electron binding energy window of 0.9 and 1.6 eV, are attributed to one- or two-electron transitions to the ground and low-lying excited neutral states. An additional, similar manifold of electronic states is observed in an electron binding energy window of 2.1-2.8 eV, which cannot be assigned to any simple one-electron transitions. This study expands on previous work on the Sm2O- triatomic, which has a more complex electronic structure because of the 4f6 subshell occupancy of each Sm center. Because of the simpler electronic structure from the half-filled 4f7 subshell occupancy in Gd2O2 and Gd2O2-, the numerous close-lying transitions observed in the spectra are better resolved, allowing a more detailed view of the changes in relative intensities of individual transitions with photon energy. With supporting calculations on numerous possible close-lying electronic states, we suggest a potential description of the strong photoelectron-valence electron interactions that may result in the photon-energy-dependent changes in the observed spectra.

5.
J Chem Phys ; 152(5): 054301, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32035442

RESUMEN

Mixed-metal oxides have proven to be effective catalysts for the hydrogen evolution reaction, often outperforming either of the binary metal oxides. The reactivity of MnxMoOy - (x = 1, 2; y = 3, 4) clusters toward H2O was investigated via time-of-flight mass spectrometry with clear evidence of cluster oxidation and corresponding H2 production, specifically for MnxMoO3 - (x = 1, 2) clusters. Unlike previously studied MoxOy - clusters, which assumed a broad distribution of stoichiometries (typically x ≤ y ≤ 3x), both MnMoOy - and Mn2MoOy - preferentially formed y = 3 and 4 compositions in significant quantities under our source conditions. The electronic and molecular structures of the MnxMoOy (x = 1, 2; y = 3, 4) anion and neutral clusters were probed with anion photoelectron spectroscopy and analyzed with supporting density functional theory calculations. Our studies suggest that both metal centers are involved in initial cluster-water complex formation, while Mo is the center that undergoes oxidation; hence, reactivity terminates when Mo is saturated in its highest oxidation state of +6. Across these four clusters, Mn remains relatively reduced and is stable in a high-spin electronic configuration. The preferential reactivity of water molecules toward the Mo center rather than Mn is rationalized by the much lower relative oxophilicity of Mn.

6.
Acc Chem Res ; 52(11): 3265-3273, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31702894

RESUMEN

Lanthanide (Ln) oxide clusters and molecular systems provide a bottom-up look at the electronic structures of the bulk materials because of close parallels in the patterns of Ln 4fN subshell occupancy between the molecular and bulk Ln2O3 size limits. At the same time, these clusters and molecules offer a challenge to the theory community to find appropriate and robust treatments for the 4fN patterns across the Ln series. Anion photoelectron (PE) spectroscopy provides a powerful experimental tool for studying these systems, mapping the energies of the ground and low-lying excited states of the neutral relative to the initial anion state, providing spectroscopic patterns that reflect the Ln 4fN occupancy. In this Account, we review our anion PE spectroscopic and computational studies on a range of small lanthanide molecules and cluster species. The PE spectra of LnO- (Ln = Ce, Pr, Sm, Eu) diatomic molecules show spectroscopic signatures associated with detachment of an electron from what can be described as a diffuse Ln 6s-like orbital. While the spectra of all four diatomics share this common transition, the fine structure in the transition becomes more complex with increasing 4f occupancy. This effect reflects increased coupling between the electrons occupying the corelike 4f and diffuse 6s orbitals with increasing N. Understanding the PE spectra of these diatomics sets the stage for interpreting the spectra of polyatomic molecular and cluster species. In general, the results confirm that the partial 4fN subshell occupancy is largely preserved between molecular and bulk oxides and borides. However, they also suggest that surfaces and edges of bulk materials may support a low-energy, diffuse Ln 6s band, in contrast to bulk interiors, in which the 6s band is destabilized relative to the 5d band. We also identify cases in which the molecular Ln centers have 4fN+1 occupancy rather than bulklike 4fN, which results in weaker Ln-O bonding. Specifically, Sm centers in mixed Ce-Sm oxides or in SmxOy- (y ≤ x) clusters have this higher 4fN+1 occupancy. The PE spectra of these particular species exhibit a striking increase in the relative intensities of excited-state transitions with decreasing photon energy (resulting in lower photoelectron kinetic energy). This is opposite of what is expected on the basis of the threshold laws that govern photodetachment. We relate this phenomenon to strong electron-neutral interactions unique to these complex electronic structures. The time scale of the interaction, which shakes up the electronic configuration of the neutral, increases with decreasing electron momentum. From a computational standpoint, we point out that special care must be taken when considering Ln cluster and molecular systems toward the center of the Ln series (e.g., Sm, Eu), where treatment of electrons explicitly or using an effective core potential can yield conflicting results on competing subshell occupancies. However, despite the complex electronic structures associated with partially filled 4fN subshells, we demonstrate that inexpensive and tractable calculations yield useful qualitative insight into the general electronic structural features.

7.
J Phys Chem A ; 123(10): 2040-2048, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30788965

RESUMEN

The electronic and molecular structure of the CeB6 molecular unit has been probed by anion PE spectroscopy and DFT calculations to gain insight into structural and electronic relaxation on edge and corner sites of this ionic material. While boron in bulk lanthanide hexaboride materials assumes octahedral B63- units, the monomer assumes a less compact structure to delocalize the charge. Two competitive molecular structures were identified for the anion and neutral species, which include a boat-like structure and a planar or near-planar teardrop structure. Ce adopts different orbital occupancies in the two isomers; the boat-like structure has a 4f superconfiguration while the teardrop favors a 4f 6s occupancy. The B6 ligand in these structures carries a charge of -4 and -3, respectively. The teardrop structure, which was calculated to be isoenergetic with the boat structure, was most consistent with the experimental spectrum. B6-local orbitals crowd the energy window between the Ce 4f and 6s (HOMO) orbitals. A low-lying transition from the B-based orbitals is observed slightly less than 1 eV above the ground state. The results suggest that edge and corner conductivity involves stabilized, highly diffuse 6s orbitals or bands rather than the bulk-favored 5d band. High-spin and open-shell low-spin states were calculated to be very close in energy for both the anion and neutral, a characteristic that reflects how decoupled the 4f electron is from the B6 2p- and Ce 6s-based molecular orbitals.

8.
J Phys Chem Lett ; 10(2): 144-149, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30569715

RESUMEN

The photoelectron spectra of Sm2O- obtained over a range of photon energies exhibit anomalous changes in relative excited-state band intensities. Specifically, the excited-state transition intensities increase relative to the transition to the neutral ground state with decreasing photon energy, the opposite of what is expected from threshold effects. This phenomenon was previously observed in studies on several Sm-rich homo- and heterolanthanide oxides collected with two different harmonic outputs of a Nd:YAG (2.330 and 3.495 eV) [ J. Chem. Phys. 2017, 146, 194310]. We relate these anomalous intensities to populations of ground and excited anionic and neutrals states through the inspection of time-dependent perturbation theory within the adiabatic and sudden limits and for the first time show that transition intensities in photoelectron spectroscopy have a deep significance in gauging participation from excited states. We believe our results will have significance in the study of other electron-rich systems that have especially high density of accessible spin states.

9.
J Phys Chem A ; 122(51): 9879-9885, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30518216

RESUMEN

Boronyl (B≡O) ligands have garnered much attention as isoelectronic and isolobal analogues of CO and CN-, yet successful efforts in synthesizing metal boronyl complexes remain scarce. Anion photoelectron (PE) spectroscopy and density functional theory calculations were employed to investigate two small CeO2B x- ( x = 2, 3) complexes generated from laser ablation of a mixed Ce/B pressed powder target. The spectra reveal markedly different bonding upon incorporation of an additional B atom. Most interestingly, CeO2B2- was found to have a Ce(I) center coordinated to two monoanionic boronyl ligands in a bent geometry. This result was unexpected as previous studies suggest electron-rich metals are most suitable for stabilizing such ligands; furthermore, it is one of the first examples of an experimental metal-polyboronyl complex. Introducing another boron atom, however, favors a much different geometry in which Ce(II) coordinates an O2B33- unit through both the O and B atoms, which was evident in the markedly different PE spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...