Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 335: 122252, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935275

RESUMEN

Attention deficit hyperactivity disorder (ADHD) has high incidence rate among children which may be due to excessive monosodium glutamate (MSG) consumption and social isolation (SI). AIM: We aimed to explore the relationships between MSG, SI, and ADHD development and to evaluate the neuroprotective potential of Punicalagin (PUN). METHODS: Eighty male rat pups randomly distributed into eight groups. Group I is the control, and Group II is socially engaged rats treated with PUN. Groups III to VII were exposed to ADHD-inducing factors: Group III to SI, Group IV to MSG, and Group V to both SI and MSG. Furthermore, Groups VI to VIII were the same Groups III to V but additionally received PUN treatment. KEY FINDINGS: Exposure to MSG and/or SI led to pronounced behavioral anomalies, histological changes and indicative of ADHD-like symptoms in rat pups which is accompanied by inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme-oxygenase 1 (HO-1)/Glutathione (GSH) pathway, decline of the brain-derived neurotrophic factor (BDNF) expression and activation of the Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-kB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway. This resulted in elevated inflammatory biomarker levels, neuronal apoptosis, and disrupted neurotransmitter equilibrium. Meanwhile, pretreatment with PUN protected against all the previous alterations. SIGNIFICANCE: We established compelling associations between MSG consumption, SI, and ADHD progression. Moreover, we proved that PUN is a promising neuroprotective agent against all risk factors of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estrés Oxidativo , Humanos , Niño , Ratas , Animales , Masculino , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Glutamato de Sodio , Oxidación-Reducción , Glutatión/metabolismo , Aislamiento Social , Factor 2 Relacionado con NF-E2/metabolismo
3.
Biomed Pharmacother ; 153: 113330, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780621

RESUMEN

The current study investigated the neuroprotective activity of some drugs and nutriceuticals with antioxidant and anti-inflammatory potential on the pathogenesis of Parkinson's disease (PD). Rats were categorized into seven groups: Rats received tween80 daily for 5 weeks as a control group, MnCl2 (10 mg/kg, i.p) either alone (group II) or in combination with vinpocetine (VIN) (20 mg/kg) (group III), punicalagin (PUN) (30 mg/kg) (group IV), niacin (85 mg/kg) (group V), vitamin E (Vit E) (100 mg/kg) (group VI) or their combination (group VII). Motor activities was examined using open-field and catalepsy. Striatal monamines, acetylcholinesterase, excitatory/inhibitory neurotransmitters, redox status, pro-oxidant content, brain inflammatory, apoptotic and antioxidant biomarkers levels were assessed. Besides, histopathological investigations of different brain regions were determined. Groups (IV -GVII) showed improved motor functions of PD rats. Applied drugs significantly increased the brain levels of monoamines with the strongest effect to PUN. Meanwhile, they significantly decreased levels of acetylcholinesterase with a strongest effect to PUN. Moreover, they exhibited significant neuronal protection and anti-inflammatory abilities through significant reduction of the brain levels of COX2, TNF-α and Il-1ß with a strongest effect to the PUN. Interestingly; groups (IV - GVII) showed restored glutamate/GABA balance and exhibited a pronounced decrease in caspase-3 content and GSK-3ß protein expression levels. In addition, they significantly increased Bcl2 mRNA expression levels with a strongest effect for PUN. All these findings were further confirmed by the histopathological examinations. As a conclusion, we propose VIN and PUN to mitigate the progression of PD via their antioxidant, anti-inflammatory, anti-apoptotic, neurotrophic and neurogenic activities.


Asunto(s)
Fármacos Neuroprotectores , Niacina , Enfermedad de Parkinson , Acetilcolinesterasa , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Taninos Hidrolizables , Manganeso/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Niacina/farmacología , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Alcaloides de la Vinca , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...