Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Genet ; 64(8): 104250, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34022416

RESUMEN

ST3GAL3 deficiency is an extremely rare autosomal recessive disorder caused by pathogenic mutations in the ST3GAL3 gene. Epilepsy, motor development delay, severe intellectual disability, and behavioral disorders have been reported to be associated with ST3GAL3 deficiency. In the present study, ST3GAL3 deficiency was caused by a homozygous splice-site mutation (NM_174964.4: c.936+1delG) in ST3GAL3. The patient described in this study was clinically similar to previously reported cases; nevertheless, we were able to detect repetitive behavior, previously not reported manifestations.


Asunto(s)
Epilepsia/genética , Discapacidad Intelectual/genética , Fenotipo , Sialiltransferasas/genética , Niño , Epilepsia/patología , Homocigoto , Humanos , Discapacidad Intelectual/patología , Masculino , Movimiento , Mutación , Sitios de Empalme de ARN , Sialiltransferasas/química , Conducta Estereotipada , Síndrome
2.
Gene ; 732: 144337, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31958484

RESUMEN

Rett syndrome (RTT) is an X-linked severe neurological disorder. Mutations in Methyl-CpG-Binding Protein2 (MECP2) gene are the main cause of RTT disease. In this study, we report the results of screening the MECP2 gene for mutations in 7 Iranian patients with RTT syndrome. MECP2 sequencing identified two novel mutations in the heterozygous state, a splice mutation, c.354G>T, p.Gly119Gly, resulting in a premature splice-donor site and a 20-bp deletion, c.1167-1186del20 (p.P390Rfs), leading to modifying the c-terminal parts of the protein and it also changes the reading frames of all coding sequence downstream of the mutation. Multiple sequence alignment showed that amino acid changes occurred in the well conserved protein regions across species. Based on the results of this study and literature reviews, about 70% of mutations are found in exon 3 and 4 of the MECP2 gene, and mutations in exon 4 are more common than other exons. Therefore, it is recommended that exon 4 to be a priority for screening the genetic analysis of RTT patients.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Mutación , Síndrome de Rett/genética , Secuencia de Aminoácidos , Niño , Exones , Femenino , Genotipo , Humanos , Irán , Masculino , Proteína 2 de Unión a Metil-CpG/química , Fenotipo , Homología de Secuencia de Aminoácido
3.
Iran J Public Health ; 47(1): 95-102, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29318123

RESUMEN

BACKGROUND: Autosomal recessive non-syndromic hearing loss (ARNSHL) a most frequent hereditary type of hearing impairment, exhibit tremendous genetic heterogeneity. We aimed to determine the contribution of three common DFNB loci (DFNB4, DFNB28, and DFNB93), and mutation analysis of Gap Junction Beta-2 gene (GJB2) and GJB3 genes in ARNSHL subjects in southern Iran. METHODS: Thirty-six large ARNSHL pedigrees (167 individuals) with at least two affected subjects (72 patients) were included in this descriptive study from Hormozgan Province of Iran, during 2014 - 2015. The variation of GJB2 and GJB3 genes were screened using direct sequencing method. The negative samples for GJB2 and GJB3 genes mutations were analyzed for the linkage to DFNB4, DFNB28, and DFNB93 loci by genotyping the corresponding short tandem repeat (STR) markers using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE) methods. RESULTS: DNA sequencing of GJB2 were identified heterozygous mutation (964 C/T) in 13.88% of the studied families. Three missense mutations (788G/A, 284C/T and 973G/C) were also detected in coding region of the GJB3 gene. The 284C/T mutation in the GJB3 occurs in compound heterozygosity along with the 964T/C mutation in the GJB2 in one family. Finally, we found no evidence of linkage to either of DFNB4, DFNB93 and DFNB28 loci. CONCLUSION: Highlighting the hypothesis that a genetic interaction between GJB2 and GJB3 genes could be lead to ARNSHL, however, no evidence of linkage to the DFNB loci was found. 284C/T variant in GJB3 gene might be pathogenic when accompanied by variant in GJB2 in a digenic pattern. However, further large-scale familial and functional studies are required to challenge this hypothesis.

4.
J Res Med Sci ; 22: 99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900455

RESUMEN

BACKGROUND: We aimed to determine the contribution of four DFNB loci and mutation analysis of gap junction beta-2 (GJB2) and GJB4 genes in autosomal recessive nonsyndromic hearing loss (ARNSHL) in South of Iran. MATERIALS AND METHODS: A total of 36 large ARNSHL pedigrees with at least two affected subjects were enrolled in the current study. The GJB2 and GJB4 genes mutations were screened using direct sequencing method. The GJB2 and GJB4 negative families were analyzed for the linkage to DFNB21, DFNB24, DFNB29, and DFNB42 loci by genotyping the corresponding STR markers using polymerase chain reaction-PAGE method. RESULTS: We found a homozygous nonsense mutation W77X and a homozygous missense mutation C169W in 5.55% of studied families in GJB2 and GJB4 genes, respectively. Five heterozygous mutations including V63G, A78T, and R127H in GJB2 gene, and R103C and R227W in GJB4 gene were detected. We identified two novel variations V63G in GJB2 and R227W in GJB4. In silico analysis predicted that both novel variations are deleterious mutations. We did not unveil any linkage between DFNB21, DFNB24, DFNB29, and DFNB42 loci and ARNSHL among studied families. CONCLUSION: This is the first report of GJB2 and GJB4 mutations from Hormozgan population. According to the previous publications regarding GJB2 and GJB4 mutations, the distribution of the mutations is different from other parts of Iran that should be considered in primary health-care programs. Further investigations are needed to evaluate the contribution of other loci in ARNSHL subjects in South of Iran.

5.
Iran J Public Health ; 45(5): 680-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27398341

RESUMEN

BACKGROUND: Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common hereditary form of deafness, and exhibits a great deal of genetic heterogeneity. So far, more than seventy various DFNB loci have been mapped for ARNSHL by linkage analysis. The contribution of three common DFNB loci including DFNB3, DFNB9, DFNB21 and gap junction beta-2 (GJB2) gene mutations in ARNSHL was investigated in south of Iran for the first time. METHODS: In this descriptive study, we investigated sixteen large families with at least two affected individuals. After DNA extraction, GJB2 gene mutations were analyzed using direct sequencing method. Negative samples for GJB2 gene mutations were analyzed for the linkage to DFNB3, DFNB9 and DFNB21 loci by genotyping the corresponding short tandem repeat (STR) markers using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE) methods. RESULTS: GJB2 mutations (283G>A and 29delT) were causes of hearing loss in 12.5% of families with ARNSHL and no evidence of linkage were found for any of DFNB3, DFNB9 and DFNB21 loci. CONCLUSION: GJB2 mutations are associated with ARNSHL. We failed to find linkage of the DFNB3, DFNB9 and DFNB21 loci among GJB2 negative families. Therefore, further studies on large-scale population and other loci will be needed to find conclusively linkage of DFNB loci and ARNSHL in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA