Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087540

RESUMEN

Infrared pump-probe and two-dimensional infrared (2D-IR) spectroscopies were used to study the vibrational dynamics of a homologous set of trimetallic dodecacarbonyls with increasingly heavy atomic masses in tetrahydrofuran solution. The vibrational lifetimes showed some evidence of the vibrational heavy atom effect (VHAE) but were not consistent across the sample set. Spectral diffusion was measured by 2D-IR spectroscopy to investigate whether the changes produced by the VHAE had influenced other aspects of vibrational dynamics. The triiron species was found to be more dynamic on very fast timescales and may exhibit evidence of a transient bridging CO structure. Centerline slope analysis of the high-frequency CO peak for each complex revealed that the vibrational dynamics were subtly but consistently slowed for the compounds with heavier metal atoms.

3.
J Chem Phys ; 156(12): 124502, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35364884

RESUMEN

Vibrational dynamics were measured by IR pump-probe spectroscopy and two-dimensional IR spectroscopy for triruthenium dodecacarbonyl and the undecacarbonyl hydride that forms when it is encapsulated in an alumina sol-gel glass. For comparison, a triruthenium undecacarbonyl hydride salt was also synthesized and studied in neat solution to identify the potential influence of the confined solvent environment on the dynamics experienced by carbon monoxide ligands. The vibrational lifetime was found to be significantly decreased for both hydride species relative to the dodecacarbonyl compound. Conversely, spectral diffusion of the CO vibrations was measured to be faster for the parent compound. The most significant dynamic changes occurred upon transformation from the starting compound to the hydride, while only minor differences were observed between the dynamics of the freely dissolved and sol-gel encapsulated hydrides. The results suggest that the structural change to the hydride has the largest impact on the dynamics and that its improved catalytic properties likely do not originate from confined solvent effects.

4.
J Chem Phys ; 156(11): 110901, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35317585

RESUMEN

Infrared refractive indices of organic materials are typically resolved through IR ellipsometry. This technique takes advantage of optical interference effects to solve the optical constants. These are the same effects that complicate the analysis of coherent spectroscopy experiments on thin films. Vibrational sum frequency generation is an interface-specific coherent spectroscopy that requires spectral modeling to account for optical interference effects to uncover interfacial molecular responses. Here, we explore the possibility of leveraging incident beam geometries and sample thicknesses to simultaneously obtain the molecular responses and refractive indices. Globally fitting a higher number of spectra with a single set of refractive indices increases the fidelity of the fitted parameters. Finally, we test our method on samples with a range of thicknesses and compare the results to those obtained by IR ellipsometry.


Asunto(s)
Vibración , Análisis Espectral
5.
J Phys Chem B ; 125(31): 8997-9004, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329557

RESUMEN

Fourier transform infrared, pump-probe polarization anisotropy, and two-dimensional infrared spectroscopies were used to study the steady-state and time-dependent behavior of carbon dioxide dissolved in three different polymer systems. Gas reorientation dynamics in poly(methyl methacrylate), poly(methyl acrylate), and poly(dimethylsiloxane) were sensitive to the nature of chemical interactions between the gas and polymer, as well as whether the polymer was in a glassy or rubbery phase. The homogeneous dynamics experienced by the asymmetric stretching vibration were found to be fastest for rubbery polymers with weak, nonspecific gas-polymer interactions. Spectral diffusion was absent for the carbon dioxide vibrational mode in glassy poly(methyl methacrylate) but was activated for the chemically similar but rubbery poly(methyl acrylate). The vibrational dynamics are shown to have a direct correlation with the diffusivity of carbon dioxide through the polymer matrices.


Asunto(s)
Dióxido de Carbono , Polímeros , Difusión , Polimetil Metacrilato , Espectrofotometría Infrarroja
6.
J Chem Phys ; 154(17): 174902, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241076

RESUMEN

Fourier transform infrared (FTIR) and two-dimensional IR (2D-IR) spectroscopies were applied to polydimethylsiloxane (PDMS) cross-linked elastomer films. The vibrational probe for the systems studied was a silicon hydride mode that was covalently bound to the polymer chains. The structure and dynamics reported by this mode were measured in response to a wide range of chemical and physical perturbations, including elevated curing temperature, increased curing agent concentration, mechanical compression, and cooling to near the glass transition temperature. The FTIR spectra were found to be relatively insensitive to all of these perturbations, and 2D-IR spectroscopy revealed that this was due to the overwhelming influence of heterogeneity on the spectral line shape. Surprisingly, the deconvoluted spectral line shapes showed that there were only slight differences in the heterogeneous and homogeneous dynamics even with the drastic macroscopic changes occurring in different systems. In the context of modeling polymer behavior, the results confirm that dynamics on the ultrafast time scale need not be included to properly model PDMS elasticity.

7.
J Phys Chem Lett ; 11(17): 7394-7399, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32820929

RESUMEN

Triruthenium dodecacarbonyl exhibits increased catalytic activity toward hydrogenation reactions when encapsulated in alumina sol-gels. In this study, we demonstrate structural and electronic changes induced by the encapsulation process. Fourier transform infrared (FTIR) spectroscopy reveals that the carbonyl vibrational modes dramatically red shift during aging in the sol-gel glass. These shifts are attributed to the formation of the metal hydride: [HRu3(CO)11]-. A comparison to the FTIR spectrum of synthesized [NEt4][HRu3(CO)11] confirms this assignment. XPS studies show that the Ru 3d5/2 peak of [HRu3(CO)11]- also shifts to lower binding energy, consistent with an increased electron density on the Ru nuclei compared to Ru3(CO)12 and confirmed by density functional calculations. This study should open the door to further investigations into the hydride's role in the previously observed catalytic activity. To the best of our knowledge, this is the first study to identify the presence of [HRu3(CO)11]- in the alumina sol-gel.

8.
Opt Lett ; 43(19): 4747-4750, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272730

RESUMEN

We report the implementation of a narrow free-spectral-range Fabry-Perot etalon for multiplex vibrational sum frequency generation (VSFG) spectroscopy. Moreover, we demonstrate the use of the etalon reflection to simultaneously generate a broadband infrared pulse, which enables a multiplex VSFG spectrometer using a total of 0.58 W. VSFG spectra with and without a nonresonant-suppressed background were simultaneously collected utilizing time asymmetry in the upconverting pulse. Two examples are demonstrated in which spectral perturbations can be induced by the time-asymmetric pulse even without nonresonant suppression.

9.
J Phys Chem A ; 122(6): 1592-1599, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29370519

RESUMEN

Fourier transform infrared and two-dimensional IR (2D-IR) spectroscopies were applied to polydimethylsiloxane (PDMS) cross-linked elastomer and a siloxane oligomer without solvent and swollen or dissolved in various solvents. The silicon hydride, which is covalently bound to the polymer chains, was the vibrational probe for the systems studied. There is almost an absence of vibrational solvatochromism in these systems. Frequency-frequency correlation functions obtained by 2D-IR spectroscopy show that the insensitivity of the FTIR spectra is due to overwhelming heterogeneity. However, the homogeneous contribution to the FTIR spectrum is smaller for the elastomer than the oligomer showing that the cross-linking process restricts the frequency fluctuations that are experienced by the hydride mode. The silicon hydride mode in a cross-linked, solvent-free PDMS film also exhibits spectral diffusion that must be due to polymer structural motions on the ultrafast time scale that are active above the glass transition temperature. Once solvents penetrate and swell the elastomer, the polymer likely continues to experience these polymer structural motions. However, we find that the vibrational dynamics are characteristic of the infiltrating solvents, showing that at least some fraction of the measured dynamics originate in solvent motions.

10.
J Chem Phys ; 147(12): 124302, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28964044

RESUMEN

Fourier transform infrared and two-dimensional IR (2D-IR) spectroscopies were applied to two different silanes in three different solvents. The selected solutes exhibit different degrees of vibrational solvatochromism for the Si-H vibration. Density functional theory calculations confirm that this difference in sensitivity is the result of higher mode polarization with more electron withdrawing ligands. This mode sensitivity also affects the extent of spectral diffusion experienced by the silane vibration, offering a potential route to simultaneously optimize the sensitivity of vibrational probes in both steady-state and time-resolved measurements. Frequency-frequency correlation functions obtained by 2D-IR show that both solutes experience dynamics on similar time scales and are consistent with a picture in which weakly interacting solvents produce faster, more homogeneous fluctuations. Molecular dynamics simulations confirm that the frequency-frequency correlation function obtained by 2D-IR is sensitive to the presence of hydrogen bonding dynamics in the surrounding solvation shell.

11.
Opt Express ; 24(17): 19863-70, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557262

RESUMEN

Determination of molecular orientation at interfaces by vibrational sum frequency generation spectroscopy (VSFG) requires measurements using at least two different polarization combinations of the incoming visible, IR, and generated SFG beams. We present a new method for the simultaneous collection of different VSFG polarization outputs by use of a modified 4f pulseshaper to create a simple frequency comb. Via the frequency comb, two visible pulses are separated spectrally but aligned in space and time to interact at the sample with mixed polarization IR light. This produces two different VSFG outputs that are separated by their frequencies at the monochromator rather than their polarizations. Spectra were collected from organic thin films with different polarization combinations to show the reliability of the method. The results show that the optical arrangement is immune to fluctuations in laser power, beam pointing, and IR spectral shape.

12.
J Phys Chem Lett ; 7(1): 62-8, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26654548

RESUMEN

Optical interference effects can be a nuisance in spectroscopy, especially in nonlinear experiments in which multiple incoming and outgoing beams are present. Vibrational sum frequency generation is particularly susceptible to interference effects because it is often applied to planar, layered materials, driving many of its practitioners to great lengths to avoid signal generation from multiple interfaces. In this perspective, we take a positive view of this metaphorical "lemon" and demonstrate how optical interference can be used as a tool to extract subtle changes in interfacial vibrational spectra. Specifically, we use small frequency shifts at a buried interface in an organic field-effect transistor to determine the fractional charge per molecule during device operation. The transfer matrix approach to nonlinear signal modeling is general and readily applied to complex layered samples that are increasingly popular in modern studies. More importantly, we show that a failure to consider interference effects can lead to erroneous interpretations of nonlinear data.


Asunto(s)
Luz , Modelos Teóricos , Análisis Espectral/métodos , Análisis Espectral/normas , Teoría Cuántica
13.
J Chem Phys ; 142(21): 212441, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049461

RESUMEN

Two-dimensional infrared (2D-IR) spectroscopy was performed on Vaska's complex (VC) and its oxygen adduct (V C-O2) in binary solvent mixtures of chloroform or benzyl alcohol in d6-benzene. The second order rate constants for oxygenation were also measured in these solvent mixtures. The rate constant in chloroform mixtures is linear with mole fraction within the error of the measurements but changes nonlinearly in benzyl alcohol mixtures, displaying a preference for the alcohol over benzene. The rate constants were compared with FTIR spectra of the carbonyl ligand and the frequency-frequency correlation function of this mode determined by 2D-IR. The line shape broadening mechanisms of the linear spectra of the CO bound to VC and V C-O2 are similar to those previously reported for V C-I2. There is a particularly strong correlation between rate constants and homogeneous linewidths of the carbonyl vibration on the V C-O2 product state. Concurrently, the FTIR spectra and spectral diffusion observed by 2D-IR corroborate an increase in solvent heterogeneity around the product. We interpret these results in the context of the potential role of solvent dynamics in facilitating chemical reactivity.

14.
Opt Lett ; 40(8): 1850-2, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25872090

RESUMEN

A fully reflective two-dimensional IR (2D-IR) setup is described that enables efficient cancellation of scattered light from multiple pulses in the phase-matched direction. The local oscillator pulse and the pulse that stimulates the vibrational echo signal are synchronously modulated (or fibrillated) in time maintaining their phase relationships with the echo wavepacket. The modification is cost-effective and can be easily implemented on existing 2D-IR instruments, and it avoids the addition of dispersive elements into the beam paths. The fibrillation results in a decrease of waiting-time resolution of only tens of femtoseconds and has no impact on the spectral lineshape, making it a general improvement for 2D-IR spectrometers even for weakly or non-scattering samples.


Asunto(s)
Dispersión de Radiación , Espectrofotometría Infrarroja/métodos , Porosidad , Dióxido de Silicio/química , Vibración
15.
J Chem Phys ; 142(2): 024703, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25591373

RESUMEN

In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

16.
J Chem Phys ; 142(2): 024704, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25591374

RESUMEN

The generalized optical interference model for interfacial contributions to vibrational sum frequency generation (VSFG) spectroscopic signals from organic thin film systems is extended to include a description of optical interferences contained in the thin film bulk response. This is based on electric quadrupolar interactions with the input fields and includes a discussion on possible contribution from the electric quadrupolar polarization. VSFG data from the first of this two part report are analyzed and include effects from higher order responses, for both bulk and higher order interfacial terms. The results indicate that although it is capable of capturing many of the data features, the electric dipole treatment is likely not a complete description of the VSFG intensity data from this system. An analysis based on the signs of the resulting response amplitudes is used to deduce the relative magnitude of the electric dipole and higher order interfacial terms. It is found that the buried interface is closer to satisfying the electric dipole approximation, consistent with smaller field gradients due to closer index matching between the organic thin film and substrate relative to air. The procedure outlined in this work allows for the difficult task of deducing a physical picture of average molecular orientation at the buried interface of a multilayer organic thin film system while including higher order effects.

17.
J Phys Chem B ; 117(49): 15741-9, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23992469

RESUMEN

Linear absorption spectroscopy of the iridium-bound carbonyl on an iodated adduct of Vaska's complex has shown that the mean vibrational frequency is insensitive to solvation by a broad range of solvents, while the spectral line width changes significantly. The spectral broadening is more significant in chloroform than benzyl alcohol, which is puzzling considering that benzyl alcohol is more polar. In this study, 2D-IR spectroscopy was performed on this vibrational mode to dissect the linear line shape into its homogeneous and inhomogeneous contributions in binary solvent mixtures of either chloroform or benzyl alcohol in d6-benzene. The full frequency-frequency correlation function was determined, including the homogeneous line width and fast spectral diffusion. We find that the frequency fluctuation magnitudes show the most notable changes in chloroform mixtures, while the time constants for spectral diffusion change more dramatically in benzyl alcohol mixtures. Nonetheless, we conclude that the frequency fluctuation magnitudes in both solvent mixtures most clearly explain the differences in their linear line widths. The homogeneous contributions were found to either stay the same or decrease as the more polar solvent was added to d6-benzene, thereby implicating inhomogeneous dynamics as the dominant broadening mechanism.

18.
J Chem Phys ; 138(15): 154708, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614437

RESUMEN

In the field of surface-specific vibrational sum frequency generation spectroscopy (VSFG) on organic thin films, optical interferences combined with the two-interface problem presents a challenge in terms of qualitative assessment of the data and quantitative modeling. The difficulty is amplified when considering systems comprised of more than a single material thin film layer. Recently, in our lab we have developed a generalized model that describes thin film interference in interface-specific nonlinear optical spectroscopies from arbitrary multilayer systems. Here, we apply the model to simulate VSFG spectra from the simplest multilayer: a system of two thin films, one of which is an organic small molecule and the other is a dielectric layer on a semiconductor substrate system where we idealize that the organic interfaces are equally VSFG active. Specifically, we consider the molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) deposited on a silicon wafer with a thermally grown oxide dielectric. We present results for the four polarization experiments that sample the nonzero nonlinear susceptibility elements of macroscopically centrosymmetric materials (ssp, sps, pss, and ppp) and in two mIR frequency windows (the imide carbonyl stretches around 1680 cm(-1) and the alkyl stretches around 2900 cm(-1)) as a function of both thin film thicknesses with fixed input beam angles. We use frequency dependent refractive indices for all materials. The goal is to illustrate some of the intricacies contained in the intensity data of such systems. Of particular interest is the effect of the relative polar orientation of modes at the interfaces and the possibility of designing a system where the collected signal is exclusively attributable to a single interface. Our calculations indicate that in order to unambiguously identify the relative polar orientation one must experimentally vary an additional system parameter such as thin film thickness or input beam angle and for quantitative modeling one cannot ignore either interfacial contribution. The results show that proper modeling of thin film interference effects is essential for accurate data analysis and should include the frequency dependent refractive indices, especially for modes with larger mIR absorption cross sections, even when absorptive losses are small.

19.
J Phys Chem A ; 117(29): 6150-7, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23531048

RESUMEN

A vibrational pump-probe and FTIR study was performed on two different adducts of Vaska's complex in two different sets of binary solvent mixtures. The carbonyl vibrational mode in the oxygen adduct exhibits solvatochromic shifts of ~10 cm(-1) in either benzyl alcohol or chloroform relative to benzene-d6, whereas this vibration is nearly unchanged for the iodine adduct for the same three solvents. The width and center frequency of the carbonyl stretch for each adduct are compared to its vibrational lifetime in binary mixtures of benzene-d6 with either benzyl alcohol or chloroform. In neat solvents, the trends in line width, frequency, and vibrational lifetime are consistent for the two adducts, but complex relationships emerge when the trends in each property are compared as a function of mixed solvent composition. ν(CO) is more sensitive to the solvation environment around the trans ligand, whereas the line width and lifetime depend on the environment around the CO group itself. The carbonyl frequency and width vary nonlinearly across the two binary solvent series, indicating preferential solvation. In contrast, the vibrational lifetime changes linearly with solvent composition and is correlated with the mole fraction of chloroform but anticorrelated with the mole fraction of benzyl alcohol. The results are explained by differences in the densities of solvent modes that affect intermolecular relaxation of the carbonyl mode.


Asunto(s)
Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Vibración , Monóxido de Carbono/química , Yoduros/química , Iridio/química , Compuestos Organofosforados/química , Oxígeno/química
20.
J Phys Chem A ; 116(37): 9279-86, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22916961

RESUMEN

The vibrational solvatochromism of bis(triphenylphosphine) iridium(I) carbonyl chloride (Vaska's complex, VC) was investigated by FTIR spectroscopy. The carbonyl stretching frequency (ν(CO)) was measured in 16 different organic solvents with a wide range of Lewis acidities for VC and its dioxygen (VC-O(2)), hydride (VC-H(2)), iodide (VC-I(2)), bromide (VC-Br(2)), and sulfide (VC-S(X)) adducts. The ν(CO) of the VC-O(2) complex was sensitive to the solvent electrophilicity, whereas minimal correlation was found for VC and the other adducts. The stretching frequency of the trans-O(2) ligand on VC-O(2) was measured to be anticorrelated with ν(CO), supporting a model in which this ligand indirectly affects the carbonyl frequency by modulating the extent of metal-to-CO back-bonding. The ν(CO) values obtained from DFT calculations on VC adducts with solvent continua and explicit hydrogen bonds were used to aid the interpretations of the experimental results. The O(2) ligand is more susceptible to stronger specific solvent interactions and it binds in a fundamentally different mode from the monatomic ligands, providing a more direct communication channel with those metal d-orbitals that have the appropriate symmetry to back-bond into the carbonyl π*-orbital.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA