Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185677

RESUMEN

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteínas Amiloidogénicas , Inmunoensayo , Espectrometría de Masas , Biomarcadores
2.
Addict Biol ; 29(1): e13358, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38221806

RESUMEN

Addictions are thought to be fostered by the emergence of poorly regulated mesocorticolimbic responses to drug-related cues. The development and persistence of these responses might be promoted by altered glutamate transmission, including changes to type 5 metabotropic glutamate receptors (mGluR5s). Unknown, however, is when these changes arise and whether the mGluR5 and mesocorticolimbic alterations are related. To investigate, non-dependent cocaine polydrug users and cocaine-naïve healthy controls underwent a positron emission tomography scan (15 cocaine users and 14 healthy controls) with [11 C]ABP688, and a functional magnetic resonance imaging scan (15/group) while watching videos depicting activities with and without cocaine use. For some drug videos, participants were instructed to use a cognitive strategy to lower craving. Both groups exhibited drug cue-induced mesocorticolimbic activations and these were larger in the cocaine polydrug users than healthy controls during the session's second half. During the cognitive regulation trials, the cocaine users' corticostriatal responses were reduced. [11 C]ABP688 binding was unaltered in cocaine users, relative to healthy controls, but post hoc analyses found reductions in those with 75 or more lifetime cocaine use sessions. Finally, among cocaine users (n = 12), individual differences in prefrontal [11 C]ABP688 binding were associated with midbrain and limbic region activations during the regulation trials. Together, these preliminary findings raise the possibility that (i) recreational polydrug cocaine users show biased brain processes towards cocaine-related cues and (ii) repeated cocaine use can lower cortical mGluR5 levels, diminishing the ability to regulate drug cue responses. These alterations might promote susceptibility to addiction and identify early intervention targets.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Oximas , Piridinas , Humanos , Señales (Psicología) , Encéfalo , Cocaína/efectos adversos , Cocaína/metabolismo , Cognición
3.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37920945

RESUMEN

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Proteínas tau , Estudios Transversales , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones
4.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001539

RESUMEN

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Gliosis , Proteínas tau/metabolismo , Proteínas 14-3-3
5.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790438

RESUMEN

Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.

6.
Alzheimers Dement (Amst) ; 15(3): e12391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37644990

RESUMEN

Introduction: [18F]AZD4694 is an amyloid beta (Aß) imaging agent used in several observational studies and clinical trials. However, no studies have yet published data on longitudinal Aß accumulation measured with [18F]AZD4694. Methods: We assessed 146 individuals who were evaluated with [18F]AZD4694 at baseline and 2-year follow-up. We calculated annual rates of [18F]AZD4694 change for clinically defined and biomarker-defined groups. Results: Cognitively unimpaired (CU) older adults displayed subtle [18F]AZD4694 standardized uptake value ratio (SUVR) accumulation over the follow-up period. In contrast, Aß positive CU older adults displayed higher annual [18F]AZD4694 SUVR increases. [18F]AZD4694 SUVR accumulation in Aß positive mild cognitive impairment (MCI) and dementia was modest across the neocortex. Discussion: Larger increases in [18F]AZD4694 SUVR were observed in CU individuals who had abnormal amyloid positron emission tomography levels at baseline. [18F]AZD4694 can be used to monitor Aß levels in therapeutic trials as well as clinical settings, particularly prior to initiating anti-amyloid therapies.

7.
Brain Commun ; 5(3): fcad146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252014

RESUMEN

A classical early sign of typical Alzheimer's disease is memory decline, which has been linked to the aggregation of tau in the medial temporal lobe. Verbal delayed free recall and recognition tests have consistently probed useful to detect early memory decline, and there is substantial debate on how performance, particularly in recognition tests, is differentially affected through health and disease in older adults. Using in vivo PET-Braak staging, we investigated delayed recall and recognition memory dysfunction across the Alzheimer's disease spectrum. Our cross-sectional study included 144 cognitively unimpaired elderly, 39 amyloid-ß+ individuals with mild cognitive impairment and 29 amyloid-ß+ Alzheimer's disease patients from the Translational Biomarkers in Aging and Dementia cohort, who underwent [18F]MK6240 tau and [18F]AZD4694 amyloid PET imaging, structural MRI and memory assessments. We applied non-parametric comparisons, correlation analyses, regression models and voxel-wise analyses. In comparison with PET-Braak Stage 0, we found that reduced, but not clinically significant, delayed recall starts at PET-Braak Stage II (adjusted P < 0.0015), and that recognition (adjusted P = 0.011) displayed a significant decline starting at PET-Braak Stage IV. While performance in both delayed recall and recognition related to tau in nearly the same cortical areas, further analyses showed that delayed recall rendered stronger associations in areas of early tau accumulation, whereas recognition displayed stronger correlations in mostly posterior neocortical regions. Our results support the notion that delayed recall and recognition deficits are predominantly associated with tau load in allocortical and neocortical areas, respectively. Overall, delayed recall seems to be more dependent on the integrity of anterior medial temporal lobe structures, while recognition appears to be more affected by tau accumulation in cortices beyond medial temporal regions.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2095-2103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36928556

RESUMEN

JNJ-42491293 is a metabotropic glutamate 2 (mGlu2) positive allosteric modulator (PAM) that was radiolabelled with [11C]- to serve as a positron emission tomography (PET) ligand. Indeed, in vitro, the molecule displays high selectivity at mGlu2 receptors. However, PET experiments performed in rats, macaques and humans, have suggested that [11C]-JNJ-42491293 could interact with an unidentified, non-mGlu2 receptor binding site. The brain distribution of [11C]-JNJ-42491293 has not been determined in the brain of the common marmoset, a small non-human primate increasingly used in neuroscience research. Here, we investigated the distribution of [11C]-JNJ-42491293 in the marmoset brain. Three marmosets underwent brain magnetic resonance imaging (MRI) and 90-min dynamic PET scans with [11C]-JNJ-42491293 in combination with vehicle or the mGlu2 PAM AZD8529 (0.1, 1 and 10 mg/kg). In the scans in which [11C]-JNJ-42491293 was co-administered with vehicle, the brain areas with the highest standardised uptake values (SUVs) were the midbrain, cerebellum and thalamus, while the lowest SUVs were found in the pons. The addition of AZD8529 (0.1, 1 and 10 mg/kg) to [11C]-JNJ-42491293 did not modify the SUVs obtained with [11C]-JNJ-42491293 alone, and ex vivo blocking autoradiography with PAM AZD8529 (10, 100, 300 µM) on marmoset brain sections showed increased signals in the blocking conditions compared to vehicle, suggesting that no competition occurred between the 2 ligands. The results we obtained here do not suggest that [11C]-JNJ-42491293 interacts selectively, or even at all, with mGlu2 receptors in the marmoset, in agreement with findings previously reported in macaque and human.


Asunto(s)
Callithrix , Tomografía de Emisión de Positrones , Ratas , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sitios de Unión , Unión Proteica
9.
J Nucl Med ; 64(3): 452-459, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36396455

RESUMEN

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-ß-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-ß status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Adulto Joven , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ovillos Neurofibrilares/metabolismo , Encéfalo/metabolismo , Péptidos beta-Amiloides , Proteínas tau/metabolismo
10.
Lab Chip ; 23(1): 81-91, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36416045

RESUMEN

Digital microfluidics (DMF) has the signatures of an ideal liquid handling platform - as shown through almost two decades of automated biological and chemical assays. However, in the current state of DMF, we are still limited by the number of parallel biological or chemical assays that can be performed on DMF. Here, we report a new approach that leverages design-of-experiment and numerical methodologies to accelerate experimental optimization on DMF. The integration of the one-factor-at-a-time (OFAT) experimental technique with machine learning algorithms provides a set of recommended optimal conditions without the need to perform a large set of experiments. We applied our approach towards optimizing the radiochemistry synthesis yield given the large number of variables that affect the yield. We believe that this work is the first to combine such techniques which can be readily applied to any other assays that contain many parameters and levels on DMF.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Bioensayo/métodos
12.
Neurology ; 99(22): e2428-e2436, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36266044

RESUMEN

BACKGROUND AND OBJECTIVES: To assess the concordance and discordance between the core Alzheimer disease (AD) CSF biomarkers and [18F]fluorodeoxyglucose (FDG)-PET patterns evaluated clinically in memory clinic patients who meet appropriate use criteria for AD biomarker investigations. METHODS: We retrospectively assessed participants with atypical and/or early-onset dementia evaluated at a tertiary care memory clinic. All individuals underwent CSF evaluations for Aß42, phosphorylated tau (P-tau181) and total tau, and brain [18F]FDG-PET. [18F]FDG-PET data were visually interpreted by 2 nuclear medicine experts as being consistent with AD or non-AD. CSF biomarker results were similarly grouped into AD biomarker positive/negative. Contingency tables and Kappa coefficients were used to establish the level of agreement and disagreement between CSF and [18F]FDG-PET results in all individuals. RESULTS: One hundred thirty-six individuals had both [18F]FDG-PET and lumbar puncture performed as part of the early-onset and/or atypical dementia assessments. [18F]FDG-PET showed a pattern suggestive of AD in 43% of patients, while CSF biomarkers showed results consistent with AD in 57% of participants. In patients who met criteria for AD biomarker investigations, we found that [18F]FDG-PET was discordant with CSF AD biomarkers in nearly 20% of cases; 12% of individuals with [18F]FDG-PET scans consistent with AD had AD-negative CSF results; and 7% of individuals with [18F]FDG-PET scans not consistent with AD had AD-positive CSF results, potentially suggesting atypical AD variants or less advanced neurodegeneration. [18F]FDG-PET discriminated patients with an AD-positive CSF profile from patients with an AD-negative profile with a sensitivity and specificity higher than 80% (sensitivity: 81%, 95% CI = 71-88%, SP: 81%, 95% CI = 68-89%). Furthermore, [18F]FDG-PET had a positive predictive value of 87% (95% CI = 78-93%) and a negative predictive value of 72% (95% CI = 60-82%). DISCUSSION: CSF and [18F]FDG-PET disagreed in nearly 20% of the cases studied in this clinical series. While CSF Aß42 and P-tau181 biomarkers are specific for AD, the topographical information from [18F]FDG-PET may provide complementary information.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Proteínas tau , Péptidos beta-Amiloides , Estudios Retrospectivos , Tomografía de Emisión de Positrones , Biomarcadores , Fragmentos de Péptidos
13.
Front Neurol ; 13: 888479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937057

RESUMEN

Abnormalities in the expression of metabotropic glutamate receptor type 5 (mGluR5) have been observed in the hippocampus of patients with drug-resistant mesial Temporal Lobe Epilepsy (mTLE). Ex-vivo studies in mTLE hippocampal surgical specimens have shown increased mGluR5 immunoreactivity, while in vivo whole brain imaging using positron emission tomography (PET) demonstrated reduced hippocampal mGluR5 availability. To further understand mGluR5 abnormalities in mTLE, we performed a saturation autoradiography study with [3H]ABP688 (a negative mGluR5 allosteric modulator). We aimed to evaluate receptor density (Bmax) and dissociation constants (KD) in hippocampal mTLE surgical specimens and in non-epilepsy hippocampi from necropsy controls. mTLE specimens showed a 43.4% reduction in receptor density compared to control hippocampi, which was independent of age, sex and KD (multiple linear regression analysis). There was no significant difference in KD between the groups, which suggests that the decreased mGluR5 availability found in vivo with PET cannot be attributed to reduced affinity between ligand and binding site. The present study supports that changes within the epileptogenic tissue include mGluR5 internalization or conformational changes that reduce [3H]ABP688 binding, as previously suggested in mTLE patients studied in vivo.

14.
Sci Transl Med ; 14(659): eabc8693, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001678

RESUMEN

Alzheimer's disease (AD) phenotypes might result from differences in selective vulnerability. Evidence from preclinical models suggests that tau pathology has cell-to-cell propagation properties. Therefore, here, we tested the cell-to-cell propagation framework in the amnestic, visuospatial, language, and behavioral/dysexecutive phenotypes of AD. We report that each AD phenotype is associated with a distinct network-specific pattern of tau aggregation, where tau aggregation is concentrated in brain network hubs. In all AD phenotypes, regional tau load could be predicted by connectivity patterns of the human brain. Furthermore, regions with greater connectivity displayed similar rates of longitudinal tau accumulation in an independent cohort. Connectivity-based tau deposition was not restricted to a specific vulnerable network but was rather a general property of brain organization, linking selective vulnerability and transneuronal spreading models of neurodegeneration. Together, this study indicates that intrinsic brain connectivity provides a framework for tau aggregation across diverse phenotypic manifestations of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
15.
Nat Commun ; 13(1): 4171, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853847

RESUMEN

Alzheimer's disease (AD) is characterized by the brain accumulation of amyloid-ß and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-ß and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-ß, tau, and class I histone deacetylase (HDAC I isoforms 1-3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-ß PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-ß and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-ß plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Histona Desacetilasa 1 , Adamantano/análogos & derivados , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos , Tomografía de Emisión de Positrones/métodos , Ratas , Proteínas tau/metabolismo
16.
ACS Chem Neurosci ; 13(9): 1382-1394, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35420022

RESUMEN

Melatonin is a neurohormone that modulates several physiological functions in mammals through the activation of melatonin receptor type 1 and 2 (MT1 and MT2). The melatonergic system is an emerging therapeutic target for new pharmacological interventions in the treatment of sleep and mood disorders; thus, imaging tools to further investigate its role in the brain are highly sought-after. We aimed to develop selective radiotracers for in vivo imaging of both MT1 and MT2 by positron emission tomography (PET). We identified four previously reported MT ligands with picomolar affinities to the target based on different scaffolds which were also amenable for radiolabeling with either carbon-11 or fluorine-18. [11C]UCM765, [11C]UCM1014, [18F]3-fluoroagomelatine ([18F]3FAGM), and [18F]fluoroacetamidoagomelatine ([18F]FAAGM) have been synthesized in high radiochemical purity and evaluated in wild-type rats. All four tracers showed moderate to high brain permeability in rats with maximum standardized uptake values (SUVmax of 2.53, 1.75, 3.25, and 4.47, respectively) achieved 1-2 min after tracer administration, followed by a rapid washout from the brain. Several melatonin ligands failed to block the binding of any of the PET tracer candidates, while in some cases, homologous blocking surprisingly resulted in increased brain retention. Two 18F-labeled agomelatine derivatives were brought forward to PET scans in non-human primates and autoradiography on human brain tissues. No specific binding has been detected in blocking studies. To further investigate pharmacokinetic properties of the putative tracers, microsomal stability, plasma protein binding, log D, and membrane bidirectional permeability assays have been conducted. Based on the results, we conclude that the fast first pass metabolism by the enzymes in liver microsomes is the likely reason of the failure of our PET tracer candidates. Nevertheless, we showed that PET imaging can serve as a valuable tool to investigate the brain permeability of new therapeutic compounds targeting the melatonergic system.


Asunto(s)
Melatonina , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Ligandos , Mamíferos/metabolismo , Melatonina/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Ratas , Receptores de Melatonina/metabolismo
17.
J Labelled Comp Radiopharm ; 65(6): 167-173, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35218059

RESUMEN

Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11 C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug-occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11 C]martinostat using [11 C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11 C]methyl iodide and DMSO. [11 C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 µl), reacted at ambient temperature for 5 min and purified by high-performance liquid chromatography; 1.5-1.8 GBq (41-48 mCi; n = 3) of formulated [11 C]martinostat was obtained from solid-phase extraction using a hydrophilic-lipophilic cartridge in a radiochemical yield of 11.4% ± 1.1% (nondecay corrected to trapped [11 C]MeI), with a molar activity of 369 ± 53 GBq/µmol (9.97 ± 1.3 Ci/µmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11 C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.


Asunto(s)
Etanol , Radiofármacos , Adamantano/análogos & derivados , Radioisótopos de Carbono/química , Humanos , Ácidos Hidroxámicos , Mesilatos , Tomografía de Emisión de Positrones/métodos
18.
Neuropsychopharmacology ; 47(5): 1128-1136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177805

RESUMEN

The clinical and pathophysiological correlates of locus coeruleus (LC) degeneration in Alzheimer's disease (AD) could be clarified using a method to index LC integrity in vivo, neuromelanin-sensitive MRI (NM-MRI). We examined whether integrity of the LC-norepinephrine system, assessed with NM-MRI, is associated with stage of AD and with neuropsychiatric symptoms (NPS), independent of cortical pathophysiology (amyloid-ß and tau burden). Cognitively normal older adults (n = 118), and individuals with mild cognitive impairment (MCI, n = 44), and AD (n = 28) underwent MR imaging and tau and amyloid-ß positron emission tomography (with [18F]MK6240 and [18F]AZD4694, respectively). Integrity of the LC-norepinephrine system was assessed based on contrast-to-noise ratio of the LC on NM-MRI images. Braak stage of AD was derived from regional binding of [18F]MK6240. NPS were assessed with the Mild Behavioral Impairment Checklist (MBI-C). LC signal contrast was decreased in tau-positive participants (t186 = -4.00, p = 0.0001) and negatively correlated to Braak stage (Spearman ρ = -0.31, p = 0.00006). In tau-positive participants (n = 51), higher LC signal predicted NPS severity (ρ = 0.35, p = 0.019) independently of tau burden, amyloid-ß burden, and cortical gray matter volume. This relationship appeared to be driven by the impulse dyscontrol domain of NPS, which was highly correlated to LC signal (ρ = 0.44, p = 0.0027). NM-MRI reveals loss of LC integrity that correlates to severity of AD. However, LC preservation in AD may also have negative consequences by conferring risk for impulse control symptoms. NM-MRI shows promise as a practical biomarker that could have utility in predicting the risk of NPS or guiding their treatment in AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
19.
J Cereb Blood Flow Metab ; 42(5): 788-801, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34378436

RESUMEN

In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-ß pathology as well as its effects on downstream processes associated with Alzheimer's disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-ß oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-ß levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-ß42/40 ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores , Estudios Longitudinales , Ratones , Tomografía de Emisión de Positrones , Ratas
20.
Neuroscience ; 480: 143-154, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774970

RESUMEN

The common marmoset has emerged as a popular model in neuroscience research, in part due to its reproductive efficiency, genetic and neuroanatomical similarities to humans and the successful generation of transgenic lines. Stereotaxic procedures in marmosets are guided by 2D stereotaxic atlases, which are constructed with a limited number of animals and fail to account for inter-individual variability in skull and brain size. Here, we developed a frameless imaging-guided stereotaxic system that improves upon traditional approaches by using subject-specific registration of computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) data to identify a surgical target, namely the putamen, in two marmosets. The skull surface was laser-scanned to create a point cloud that was registered to the 3D reconstruction of the skull from CT. Reconstruction of the skull, as well as of the brain from MR images, was crucial for surgical planning. Localisation and injection into the putamen was done using a 6-axis robotic arm controlled by a surgical navigation software (Brainsight™). Integration of subject-specific registration and frameless stereotaxic navigation allowed target localisation specific to each animal. Injection of alpha-synuclein fibrils into the putamen triggered progressive neurodegeneration of the nigro-striatal system, a key feature of Parkinson's disease. Four months post-surgery, a PET scan found evidence of nigro-striatal denervation, supporting accurate targeting of the putamen during co-registration and subsequent surgery. Our results suggest that this approach, coupled with frameless stereotaxic neuronavigation, is accurate in localising surgical targets and can be used to assess endpoints for longitudinal studies.


Asunto(s)
Neuronavegación , Procedimientos Quirúrgicos Robotizados , Animales , Callithrix , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Técnicas Estereotáxicas , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...