Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Methods ; 222: 106941, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714225

RESUMEN

Reliable detection of bacteria belonging to the Borrelia burgdorferi sensu lato species complex in vertebrate reservoirs, tick vectors, and patients is key to answer questions regarding Lyme borreliosis epidemiology. Nevertheless, the description of characteristics of qPCRs for the detection of B. burgdorferi s. l. are often limited. This study covers the development and validation of two duplex taqman qPCR assays used to target four markers on the chromosome of genospecies of B. burgdorferi s. l. Analytical specificity was determined with a panel of spirochete strains. qPCR characteristics were specified using water or tick DNA spiked with controlled quantities of the targeted DNA sequences of B. afzelii, B. burgdorferi sensu stricto or B. bavariensis. The effectiveness of detection results was finally evaluated using DNA extracted from ticks and biopsies from mammals whose infectious status had been determined by other detection assays. The developed qPCR assays allow exclusive detection of B. burgdorferi s. l. with the exception of the M16 marker which also detect relapsing fever Borreliae. The limit of detection is between 10 and 40 copies per qPCR reaction depending on the sample type, the B. burgdorferi genospecies and the targeted marker. Detection tests performed on various kind of samples illustrated the accuracy and robustness of our qPCR assays. Within the defined limits, this multi-target qPCR method allows a versatile detection of B. burgdorferi s. l., regardless of the genospecies and the sample material analyzed, with a sensitivity that would be compatible with most applications and a reproducibility of 100% under measurement conditions of limits of detection, thereby limiting result ambiguities.

2.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486749

RESUMEN

Mycoplasma bovis is a major aetiological agent of bovine respiratory disease worldwide. Genome-based analyses are increasingly being used to monitor the genetic diversity and global distribution of M. bovis, complementing existing subtyping schemes based on locus sequencing. However, these analyses have so far provided limited information on the spatiotemporal and population dynamics of circulating subtypes. Here we applied a genome-wide phylodynamic approach to explore the epidemic dynamics of 88 French M. bovis strains collected between 2000 and 2019 in France and belonging to the currently dominant polC subtype 2 (st2). A strong molecular clock signal detected in the genomic data enabled robust phylodynamic inferences, which estimated that the M. bovis st2 population in France is composed of two lineages that successively emerged from independent introductions of international strains. The first lineage appeared around 2000 and supplanted the previously established antimicrobial-susceptible polC subtype 1. The second lineage, which is likely more transmissible, progressively replaced the first M. bovis st2 lineage population from 2005 onward and became predominant after 2010. Analyses also showed a brief decline in this second M. bovis st2 lineage population in around 2011, possibly due to the challenge from the concurrent emergence of M. bovis polC subtype 3 in France. Finally, we identified non-synonymous mutations in genes associated with lineages, which raises prospects for identifying new surveillance molecular markers. A genome-wide phylodynamic approach provides valuable resources for monitoring the evolution and epidemic dynamics of circulating M. bovis subtypes, and may prove critical for developing more effective surveillance systems and disease control strategies.


Asunto(s)
Genoma Bacteriano , Infecciones por Mycoplasma , Mycoplasma bovis , Filogenia , Mycoplasma bovis/genética , Mycoplasma bovis/aislamiento & purificación , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Francia/epidemiología , Enfermedades de los Bovinos/epidemiología , Animales , Aptitud Genética
3.
Biodivers Data J ; 8: e50123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431559

RESUMEN

BACKGROUND: In Europe, ticks are major vectors of both human and livestock pathogens (e.g. Lyme disease, granulocytic anaplasmosis, bovine babesiosis). Agricultural landscapes, where animal breeding is a major activity, constitute a mosaic of habitat types of various quality for tick survival and are used at different frequencies by wild and domestic hosts across seasons. This habitat heterogeneity, in time and space, conditions the dynamics of these host-vector-pathogen systems and thus drives acarological risk (defined as the density of infected ticks). The principal objective of the OSCAR project (2011-2016) was to examine the links between this heterogeneity and acarological risk for humans and their domestic animals. Here, we present the data associated with this project. NEW INFORMATION: This paper reports a database on the distribution and densities of I. ricinus ticks - the most common tick species in French agricultural landscapes - and the prevalence of three tick-borne pathogens (Anaplasma phagocytophilum, Borrelia spp. and Babesia spp.) in two sites in north-western ("Zone Atelier Armorique": ZA site) and south-western ("Vallées et Coteaux de Gascogne": VG site) France. The distribution and density of ticks along a gradient of wooded habitats, as well as biotic variables, such as the presence and abundance of their principal domestic (livestock) and wild hosts (small mammals), were measured from forest cores and edges to more or less isolated hedges, all bordering meadows. Ticks, small mammals and information on local environmental conditions were collected along 90 transects in each of the two sites in spring and autumn 2012 and 2013 and in spring 2014, corresponding to the main periods of tick activity. Local environmental conditions were recorded along each tick and small mammal transect: habitat type, vegetation type and characteristics, slope and traces of livestock presence. Samples consisted of questing ticks collected on the vegetation (mainly I. ricinus nymphs), biopsies of captured small mammals and ticks fixed on small mammals. In the VG site, livestock occurrence and abundance were recorded each week along each tick transect.A total of 29004 questing ticks and 1230 small mammals were captured during the study across the two sites and over the five field campaigns. All questing nymphs (N = 12287) and questing adults (N = 646) were identified to species. Ticks from small mammals (N = 1359) were also identified to life stage. Questing nymphs (N = 4518 I. ricinus) and trapped small mammals (N = 908) were analysed for three pathogenic agents: A. phagocytophilum, Borrelia spp. and Babesia spp.In the VG site, the average prevalence in I. ricinus nymphs for A. phagocytophilum, Borrelia spp. and Babesia spp. were, respectively 1.9% [95% CI: 1.2-2.5], 2.5% [95% CI: 1.8-3.2] and 2.7% [95% CI: 2.0-3.4]. In small mammals, no A. phagocytophilum was detected, but the prevalence for Borrelia spp. was 4.2% [95% CI: 0.9-7.5]. On this site, there was no screening of small mammals for Babesia spp. In ZA site, the average prevalence in nymphs for A. phagocytophilum, Borrelia spp. and Babesia were, respectively 2.2% [95% CI: 1.6-2.7], 3.0% [95% CI: 2.3-3.6] and 3.1% [95% CI: 2.5-3.8]. In small mammals, the prevalence of A. phagocytophilum and Borrelia spp. were, respectively 6.9% [95% CI: 4.9-8.9] and 4.1% [95% CI: 2.7-5.9]. A single animal was found positive for Babesia microti at this site amongst the 597 tested.

4.
Sci Rep ; 6: 31273, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27498685

RESUMEN

Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings.


Asunto(s)
Borrelia burgdorferi/genética , Ixodes/microbiología , Enfermedad de Lyme/transmisión , Animales , Aves , Reservorios de Enfermedades , Ecología , Bosques , Francia , Genotipo , Humanos , Especies Introducidas , Enfermedad de Lyme/microbiología , Ninfa/microbiología , Filogenia , Sciuridae , Análisis de Secuencia de ADN , Zoonosis/microbiología , Zoonosis/transmisión
5.
Parasit Vectors ; 8: 433, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26296344

RESUMEN

BACKGROUND: Reliable information on host use by arthropod vectors is required to study pathogen transmission ecology and to predict disease risk. Direct observation of host use is often difficult or impossible and indirect methods are therefore necessary. However, the reliability of currently available methods to identify the last host of blood-feeding arthropods has not been evaluated, and may be particularly problematic for ticks because host blood has been digested at capture. Biases in host detection may lead to erroneous conclusions on both vector ecology and pathogen circulation. METHODS: Here, we experimentally tested for biases in host detection using the generalist three-host tick Ixodes ricinus as a model system. We fed ticks using an artificial feeding system and amplified blood meal traces post-moult (i.e., in the succeeding unfed life stage) via both a quantitative real-time polymerase chain reaction assay and a reverse line blotting method. We then experimentally tested for three types of biases in host detection: 1) time post-moult, 2) tick life stage and 3) host type (non-nucleated mammal blood versus nucleated avian blood), and compared these biases between the two molecular methods. RESULTS: Our results show that all three factors can influence host detection in ticks but not necessarily in the expected way. Although host detection rates decreased with time post-moult, mammal blood tended to be more readily detected than bird blood. Tick life stage was also an important factor; detection was higher in nymphs than in adults and, in some cases, remnants from both larval and nymphal blood meals could be detected in the adult stage. These biases were similar for the two detection techniques. CONCLUSIONS: We show that different factors associated with questing ticks may influence our ability to correctly infer previous host use and that these factors may bias inferences from field-based studies. As these biases may be common to other vector-borne disease systems, their implications for our understanding of vector ecology and disease transmission require more explicit consideration.


Asunto(s)
Pollos/sangre , Eritrocitos/citología , Conducta Alimentaria , Ixodes/genética , Mamíferos/sangre , Animales , Interacciones Huésped-Parásitos
6.
Ticks Tick Borne Dis ; 6(3): 393-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25805623

RESUMEN

Reservoir competence is a key parameter in understanding the role of host species in the epidemiology of multi-host-especially vector-borne-pathogens. With this aim in view, we studied the reservoir competence of the Siberian chipmunk (Tamias sibiricus barberi) recently introduced into Europe, for the multi-host tick-borne bacteria, Borrelia burgdorferi sl, the agent of Lyme borreliosis. T. sibiricus were experimentally exposed to bites from Ixodes ricinus ticks infected with Borrelia burgdorferi sensu stricto and Borrelia afzelii, with subsequent assessment of bacteremia and antibody responses. Borrelia was detected in chipmunk blood samples, ear biopsies and organ necropsies, and in nymphs used for xenodiagnosis (at one and six months after the initial chipmunk infection) via both serological and molecular methods. In total, eight out of twelve chipmunks showed evidence of infection by Borrelia sp., either by ELISA or PCR. Five chipmunks developed an immune response against the bacteria one month after infection. Borrelia infection in at least one organ was observed in seven animals at 14, 38, 93 or 178 days post-infection. Xenodiagnosis was positive for one chipmunk at 38 days, but no longer at 178 days post-infection. Four chipmunks remained uninfected, despite similar infection pressures to those observed in the field. Taken together, these results suggest that chipmunks can be infected through Borrelia-infected tick bites, and can transmit Borrelia to nymphs, but do not remain persistently infected.


Asunto(s)
Vectores Arácnidos/microbiología , Grupo Borrelia Burgdorferi/fisiología , Borrelia burgdorferi/fisiología , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Sciuridae/microbiología , Animales , Mordeduras y Picaduras , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Reservorios de Enfermedades , Europa (Continente) , Femenino , Enfermedad de Lyme/transmisión , Masculino , Ninfa
7.
PLoS One ; 8(1): e55377, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383170

RESUMEN

The variation of the composition in species of host communities can modify the risk of disease transmission. In particular, the introduction of a new host species can increase health threats by adding a new reservoir and/or by amplifying the circulation of either exotic or native pathogens. Lyme borreliosis is a multi-host vector-borne disease caused by bacteria belonging to the Borrelia burgdorferi sensu lato complex. It is transmitted by the bite of hard ticks, especially Ixodes ricinus in Europe. Previous studies showed that the Siberian chipmunk, Tamias sibiricus barberi, an introduced ground squirrel in the Forest of Sénart (near Paris, France) was highly infested by I. ricinus, and consequently infected by B. burgdorferi sl. An index of the contribution of chipmunks to the density of infected questing nymphs on the vegetation (i.e., the acarological risk for humans) was compared to that of bank voles (Myodes glareolus) and of wood mice (Apodemus sylvaticus), two known native and sympatric competent reservoir hosts. Chipmunks produced nearly 8.5 times more infected questing nymphs than voles and mice. Furthermore, they contribute to a higher diversity of B. burgdorferi sl genospecies (B. afzelii, B. burgdorferi sensu stricto and B. garinii). The contribution of chipmunks varied between years and seasons, according to tick availability. As T. s. barberi must be a competent reservoir, it should amplify B. burgdorferi sl infection, hence increasing the risk of Lyme borreliosis in humans.


Asunto(s)
Borrelia burgdorferi/genética , Reservorios de Enfermedades/microbiología , Especies Introducidas , Ixodes/microbiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/transmisión , Sciuridae/microbiología , Infestaciones por Garrapatas/veterinaria , Animales , Arvicolinae/microbiología , Cartilla de ADN/genética , Reservorios de Enfermedades/parasitología , Francia/epidemiología , Enfermedad de Lyme/microbiología , Ratones , Murinae/microbiología , Reacción en Cadena de la Polimerasa , Densidad de Población , Prevalencia , ARN Ribosómico 16S/genética , Sciuridae/parasitología , Infestaciones por Garrapatas/epidemiología
8.
Comp Immunol Microbiol Infect Dis ; 35(6): 583-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22898354

RESUMEN

We report the molecular detection of Borrelia afzelii (11%) and Bartonella spp. (56%) in 447 bank voles trapped in a suburban forest in France. Adult voles were infected by significantly more Borrelia afzelii than juveniles (p<0.001), whereas no significant difference was detected in the prevalence of Bartonella spp. between young and adult individuals (p=0.914). Six percent of the animals were co-infected by both bacteria. Analysis of the bank vole carrier status for either pathogen indicated that co-infections occur randomly (p=0.94, CI(95)=[0.53; 1.47]). Sequence analysis revealed that bank voles were infected by a single genotype of Borrelia afzelii and by 32 different Bartonella spp. genotypes, related to three known species specific to rodents (B. taylorii, B. grahamii and B. doshiae) and also two as yet unidentified Bartonella species. Our findings confirm that rodents harbor high levels of potential human pathogens; therefore, widespread surveillance should be undertaken in areas where humans may encounter rodents.


Asunto(s)
Arvicolinae/microbiología , Infecciones por Bartonella/veterinaria , Bartonella/genética , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Enfermedades de los Roedores/epidemiología , Factores de Edad , Animales , Técnicas de Tipificación Bacteriana , Bartonella/aislamiento & purificación , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/microbiología , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/aislamiento & purificación , Coinfección , Reservorios de Enfermedades/microbiología , Monitoreo Epidemiológico , Francia/epidemiología , Humanos , Enfermedad de Lyme/microbiología , Filogenia , Prevalencia , Enfermedades de los Roedores/microbiología , Árboles
9.
Appl Environ Microbiol ; 76(24): 7931-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20971877

RESUMEN

We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.


Asunto(s)
Biodiversidad , Celulosa/metabolismo , Hidrógeno/metabolismo , Metagenoma , Metano/metabolismo , Rumen/microbiología , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Fibrobacter/crecimiento & desarrollo , Fibrobacter/metabolismo , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Vida Libre de Gérmenes , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Ruminococcus/crecimiento & desarrollo , Ruminococcus/metabolismo , Análisis de Secuencia de ADN , Ovinos
10.
Curr Microbiol ; 50(2): 96-101, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15702254

RESUMEN

We investigated the potential of the ruminant feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of the rumen bacterial species Prevotella albensis M384, Streptococcus bovis 20480, and Butyrivibrio fibrisolvens 3071 grown in vitro. Alive or heat-killed yeast cells were added to bacterial cultures in a complex casein-glucose medium. After incubation of the cultures at 39 degrees C under O(2)-free CO(2), peptidase activities were determined in the absence or in the presence of yeasts. Protease activities were detected after PAGE in gelatin-copolymerized gels. In co-incubations of bacteria and live S. cerevisiae I-1077, proteinase activities were reduced compared to the activities in the bacterial monocultures. Measurement of peptidase activities and microbial enumerations in the co-incubations suggested that live yeasts and bacteria interacted in a competitive way, leading to a decrease in peptidase activities. The mechanism responsible for such an effect could be mainly a competition for substrate utilization, but the release of small competitive peptides by the yeast cells is also likely to be implicated.


Asunto(s)
Alimentación Animal/microbiología , Proteínas en la Dieta/metabolismo , Aditivos Alimentarios , Microbiología de Alimentos , Rumen/microbiología , Saccharomyces cerevisiae/metabolismo , Animales , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Técnicas In Vitro , Péptido Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...