Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 11(19): e15824, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37771071

RESUMEN

The purpose of this study was to assess the influence of genetic background and sex on nitric oxide (NO)-mediated vasomotor function in arteries from different vascular territories. Vasomotor function was assessed in thoracic aorta, abdominal aorta, carotid arteries, and femoral arteries from the following mouse strains: SJL/J, DBA/2J, NZW/LacJ, and C57BL/6J. Contractile responses were assessed using the α1-adrenergic receptor agonist phenylephrine (PE, 10-9 -10-5 M). Vasorelaxation responses were assessed by examining relaxation to an endothelium-dependent vasodilator acetylcholine (ACh, 10-9 -10-5 M) and an endothelium-independent vasodilator sodium nitroprusside (SNP, 10-9 -10-5 M). To evaluate the role of NO, relaxation responses to ACh and SNP were assessed in the absence or presence of a nitric oxide synthase inhibitor (N omega-nitro-l-arginine methyl ester hydrochloride: 10-4 M). Vasomotor responses to ACh and PE varied across strains and among the arteries tested with some strains exhibiting artery-specific impairment. Results indicated some concentration-response heterogeneity in response to ACh and SNP between vessels from females and males, but no significant differences in responses to PE. Collectively, these findings indicate that vasomotor responses vary by genetic background, sex, and artery type.


Asunto(s)
Acetilcolina , Vasodilatadores , Ratones , Masculino , Femenino , Animales , Ratones Endogámicos DBA , Ratones Endogámicos C57BL , Vasodilatadores/farmacología , Acetilcolina/farmacología , Vasodilatación/fisiología , Arteria Femoral/fisiología , Óxido Nítrico/farmacología , NG-Nitroarginina Metil Éster/farmacología , Antecedentes Genéticos , Endotelio Vascular/fisiología
2.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298565

RESUMEN

Thoracic aortic aneurysm is found in patients with ACTA2 pathogenic variants. ACTA2 missense variants are associated with impaired aortic smooth muscle cell (SMC) contraction. This study tested the hypothesis that the Acta2R149C/+ variant alters actin isoform expression and decreases integrin recruitment, thus, reducing aortic contractility. Stress relaxation measurements in thoracic aortic rings showed two functional regimes with a reduction of stress relaxation in the aorta from Acta2R149C/+ mice at low tension, but not at high tension values. Contractile responses to phenylephrine and potassium chloride were 50% lower in Acta2R149C/+ mice than in wild-type (WT) mice. Additionally, SMC were immunofluorescently labeled for specific proteins and imaged by confocal or total internal reflection fluorescence microscopy. The quantification of protein fluorescence of Acta2R149C/+ SMC showed a downregulation in smooth muscle α-actin (SMα-actin) and a compensatory upregulation of smooth muscle γ-actin (SMγ-actin) compared to WT cells. These results suggest that downregulation of SMα-actin leads to reduced SMC contractility, while upregulation of SMγ-actin may lead to increased SMC stiffness. Decreased α5ß1 and α2ß1 integrin recruitment at cell-matrix adhesions further reduce the ability of mutant cells to participate in cell-matrix crosstalk. Collectively, the results suggest that mutant Acta2R149C/+ aortic SMC have reduced contractility and interaction with the matrix, which are potential long-term contributing factors to thoracic aortic aneurysms.


Asunto(s)
Actinas , Aneurisma de la Aorta Torácica , Ratones , Animales , Actinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Miocitos del Músculo Liso/metabolismo , Aneurisma de la Aorta Torácica/metabolismo , Uniones Célula-Matriz/metabolismo , Músculo Liso/metabolismo
3.
Front Physiol ; 12: 782695, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950054

RESUMEN

Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.

4.
Physiol Rep ; 8(21): e14605, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33190396

RESUMEN

In this pilot work, we selected two inbred strains that respond well to endurance training (ET) (FVB/NJ, and SJL/J strains), and two strains that respond poorly (BALB/cByJ and NZW/LacJ), to determine the effect of a standardized ET treadmill program on mitochondrial and nuclear DNA (nucDNA) integrity, and mitochondrial DNA (mtDNA) copy number. DNA was isolated from plantaris muscles (n = 37) and a gene-specific quantitative PCR-based assay was used to measure DNA lesions and mtDNA copy number. Mean mtDNA lesions were not different within strains in the sedentary or exercise-trained states. However, mtDNA lesions were significantly higher in trained low-responding NZW/LacJ mice (0.24 ± 0.06 mtDNA lesions/10 Kb) compared to high-responding strains (mtDNA lesions/10 Kb: FVB/NJ = 0.11 ± 0.01, p = .049; SJL/J = 0.04 ± 0.02; p = .003). ET did not alter mean mtDNA copy numbers for any strain, although both sedentary and trained FVB/NJ mice had significantly higher mtDNA copies (99,890 ± 4,884 mtDNA copies) compared to low-responding strains (mtDNA copies: BALB/cByJ = 69,744 ± 4,675; NZW/LacJ = 65,687 ± 5,180; p < .001). ET did not change nucDNA lesions for any strain, however, SJL/J had the lowest mean nucDNA lesions (3.5 ± 0.14 nucDNA lesions/6.5 Kb) compared to all other strains (nucDNA lesions/6.5 Kb: FVB/NJ = 4.4 ± 0.11; BALB/cByJ = 4.7 ± 0.09; NZW/LacJ = 4.4 ± 0.11; p < .0001). Our results demonstrate strain differences in plantaris muscle mtDNA lesions in ET mice and, independent of condition, differences in mean mtDNA copy and nucDNA lesions between strains.


Asunto(s)
Variaciones en el Número de Copia de ADN , Daño del ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Condicionamiento Físico Animal , Animales , Entrenamiento Aeróbico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos , Mitocondrias/metabolismo , Mitocondrias/patología , Especificidad de la Especie
5.
Korean J Physiol Pharmacol ; 24(1): 53-68, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31908575

RESUMEN

The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.

6.
Physiol Rep ; 8(1): e14341, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960593

RESUMEN

Aging is associated with impaired vascular function characterized in part by attenuated vasorelaxation to acetylcholine (ACh) and sodium nitroprusside (SNP). Due to structural and functional differences between conduit and resistance arteries, the effect of aging on vasorelaxation responses may vary along the arterial tree. Our purpose was to determine age-related differences in vasorelaxation responses in large and small arteries. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were assessed in abdominal aorta (AA), iliac arteries (IA), femoral arteries (FA), and gastrocnemius feed arteries (GFA) from young and old male rats. ACh-mediated vasorelaxation was significantly impaired in old AA and IA. SNP-mediated vasorelaxation was impaired in old AA. To investigate a potential mechanism for impaired relaxation responses in AA and IA, we assessed eNOS protein content and interactions with caveolin-1 (Cav-1), and calmodulin (CaM) via immunoprecipitation and immunoblot analysis. We found no age differences in eNOS content or interactions with Cav1 and CaM. Combined data from all rats revealed that eNOS content was higher in IA compared to AA and FA (p < .001), and was higher in GFA than AA (p < .05). Cav1:eNOS interaction was greater in FA than in AA and IA (p < .01), and in GFA compared to IA (p < .05). No differences in CaM:eNOS were detected. In conclusion, age-related impairment of vasorelaxation responses occurred in the large conduit, but not small conduit or resistance arteries. These detrimental effects of age were not associated with changes in eNOS or its interactions with Cav-1 or CaM.


Asunto(s)
Envejecimiento/fisiología , Aorta Abdominal/fisiopatología , Arteria Femoral/fisiopatología , Arteria Ilíaca/fisiopatología , Vasodilatación/fisiología , Vasodilatadores/farmacología , Acetilcolina/farmacología , Envejecimiento/metabolismo , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/metabolismo , Arterias/efectos de los fármacos , Arterias/metabolismo , Arterias/fisiopatología , Calmodulina/metabolismo , Caveolina 1/metabolismo , Arteria Femoral/efectos de los fármacos , Arteria Femoral/metabolismo , Arteria Ilíaca/efectos de los fármacos , Arteria Ilíaca/metabolismo , Masculino , Músculo Esquelético/irrigación sanguínea , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroprusiato/farmacología , Ratas , Vasodilatación/efectos de los fármacos
7.
Curr Top Membr ; 86: 217-253, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33837694

RESUMEN

Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.


Asunto(s)
Músculo Liso Vascular , Rigidez Vascular , Envejecimiento , Animales , Matriz Extracelular , Miocitos del Músculo Liso
8.
Front Physiol ; 10: 1165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572215

RESUMEN

Quantitative trait loci for exercise capacity and training-induced changes in exercise capacity were identified previously on mouse Chromosome 14. The aim of this study was to further investigate the role of Chromosome 14 in exercise capacity and responses to training in mice. Exercise phenotypes were measured in chromosome substitution strain mice carrying Chromosome 14 from the PWD/PhJ donor strain on the genetic background of a host C57BL/6J (B6) strain (B6.PWD14). Eight week old female and male mice from both strains completed a graded exercise test to exhaustion to assess intrinsic or baseline exercise capacity. A separate group of 12-week old female and male mice, randomly assigned to sedentary control (SED) or exercise training (EX) groups, completed a graded exercise test before and after a 4-week exercise training period. EX mice completed a 4-week training program consisting of treadmill running 5 days/week, 60 min/day at a final intensity of approximately 65% of maximum. For intrinsic exercise capacity, exercise time and work were significantly greater in female and male B6.PWD14 than sex-matched B6 mice. In the training study, female B6.PWD14 mice had higher pre-training exercise capacity than B6 mice. In contrast, there were no significant differences for pre-training exercise capacity between male B6 and B6.PWD14 mice. There were no significant strain differences for responses to training. These data demonstrate that PWD/PhJ alleles on Chromosome 14 significantly affect intrinsic exercise capacity. Furthermore, these results support continued efforts to identify candidate genes on Chromosome 14 underlying variation in exercise capacity.

9.
Front Physiol ; 8: 974, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29249981

RESUMEN

Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4-10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21-42 min) and work performed (range = 0.42-3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (-0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.

10.
Front Physiol ; 7: 571, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27932996

RESUMEN

The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of cardiovascular disease risk factors, those risk factors are not the only determinants of endothelial dysfunction. Despite knowing many molecules involved in endothelial signaling pathways, the genetic contribution to endothelial function has yet to be fully elucidated. This mini-review summarizes current evidence supporting the genetic contribution to endothelial vasomotor function. Findings from population-based studies, association studies for candidate genes, and unbiased large genomic scale studies in humans and rodent models are discussed. A brief synopsis of the current studies addressing the genetic regulation of endothelial responses to exercise training is also included.

11.
Physiol Genomics ; 48(11): 861-873, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27764765

RESUMEN

Understanding the genetic influence on vascular reactivity is important for identifying genes underlying impaired vascular function. The purpose of this study was to characterize the genetic contribution to intrinsic vascular function and to identify loci associated with phenotypic variation in vascular reactivity in mice. Concentration response curves to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh), and sodium nitroprusside (SNP) were generated in aortic rings from male mice (12 wk old) from 27 inbred mouse strains. Significant strain-dependent differences were found for both maximal responses and sensitivity for each agent, except for SNP Max (%). Strain differences for maximal responses to ACh, PE, and KCl varied by two- to fivefold. On the basis of these large strain differences, we performed genome-wide association mapping (GWAS) to identify loci associated with variation in responses to these agents. GWAS for responses to ACh identified four significant and 19 suggestive loci. Several suggestive loci for responses to SNP, PE, and KCl (including one significant locus for KCl EC50) were also identified. These results demonstrate that intrinsic endothelial function, and more generally vascular function, is genetically determined and associated with multiple genomic loci. Furthermore, these results are supported by the finding that several genes residing in significant and suggestive loci for responses to ACh were previously identified in rat and/or human quantitative trait loci/GWAS for cardiovascular disease. This study represents the first step toward the unbiased comprehensive discovery of genetic determinants that regulate intrinsic vascular function, particularly endothelial function.


Asunto(s)
Aorta/fisiología , Endotelio Vascular/fisiología , Vasodilatación/genética , Acetilcolina/farmacología , Animales , Peso Corporal/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos , Contracción Miocárdica/efectos de los fármacos , Nitroprusiato/farmacología , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Sitios de Carácter Cuantitativo/genética , Vasodilatación/efectos de los fármacos
12.
PLoS One ; 10(12): e0145741, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26710100

RESUMEN

Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.


Asunto(s)
Condicionamiento Físico Animal/fisiología , Esfuerzo Físico/genética , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Genotipo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos , Sitios de Carácter Cuantitativo
13.
F1000Res ; 3: 9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184035

RESUMEN

Previous research identified a locus on Chromosome 14 as an important regulator of endurance exercise capacity in mice. The aim of this study was to investigate the effect of chromosome substitution on intrinsic exercise capacity and identify quantitative trait loci (QTL) associated with exercise capacity in mice. Mice from a chromosome substitution strain (CSS) derived from A/J and C57Bl/6J (B6), denoted as B6.A14, were used to assess the contribution of Chromosome 14 to intrinsic exercise capacity. All mice performed a graded exercise test to exhaustion to determine exercise capacity expressed as time (min) or work (kg·m). Exercise time and work were significantly greater in B6 mice than B6.A14 and A/J mice, indicating the presence of a QTL on Chromosome 14 for exercise capacity. To localize exercise-related QTL, 155 B6.A14 x B6 F 2 mice were generated for linkage analysis. Suggestive QTL for exercise time (57 cM, 1.75 LOD) and work (57 cM, 2.08 LOD) were identified in the entire B6.A14 x B6 F 2 cohort. To identify putative sex-specific QTL, male and female F 2 cohorts were analyzed separately.  In males, a significant QTL for exercise time (55 cM, 2.28 LOD) and a suggestive QTL for work (55 cM, 2.19 LOD) were identified.  In the female cohort, no QTL was identified for time, but a suggestive QTL for work was located at 16 cM (1.8 LOD). These data suggest that one or more QTL on Chromosome 14 regulate exercise capacity. The putative sex-specific QTL further suggest that the genetic architecture underlying exercise capacity is different in males and females.  Overall, the results of this study support the use of CSS as a model for the genetic analysis of exercise capacity. Future studies should incorporate the full panel of CSS using male and female mice to dissect the genetic basis for differences in exercise capacity.

14.
Physiol Genomics ; 44(19): 948-55, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22911454

RESUMEN

There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n = 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.


Asunto(s)
Resistencia Física/genética , Esfuerzo Físico/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Varianza , Animales , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos , Polimorfismo de Nucleótido Simple/genética
15.
Mol Endocrinol ; 25(8): 1301-10, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21622535

RESUMEN

The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4(-/-)) suffered mitochondrial myopathy, and histological examination of TR4(-/-) soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4(-/-) mice. Restoration of TR4 into TR4(-/-) myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4(-/-) myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Miopatías Mitocondriales/metabolismo , Receptores de Esteroides/deficiencia , Receptores de Hormona Tiroidea/deficiencia , Adenosina Trifosfato/biosíntesis , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Láctico/sangre , Metformina/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Miopatías Mitocondriales/sangre , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/patología , Debilidad Muscular/sangre , Debilidad Muscular/complicaciones , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Condicionamiento Físico Animal , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Ribonucleótidos/farmacología
16.
Physiol Genomics ; 40(1): 15-22, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19789284

RESUMEN

The genetic factors determining the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with adaptation to exercise training in a cross between FVB/NJ (FVB) and C57BL/6J (B6) mice. Mice completed an exercise performance test before and after a 4-wk treadmill running program, and changes in exercise capacity, expressed as work (kg.m), were calculated. Changes in work in F(2) mice averaged 1.51 +/- 0.08 kg.m (94.3 +/- 7.3%), with a range of -1.67 to +4.55 kg.m. All F(2) mice (n = 188) were genotyped at 20-cM intervals with 103 single nucleotide polymorphisms (SNPs), and genomewide linkage scans were performed for pretraining, posttraining, and change in work. Significant QTL for pretraining work were located on chromosomes 14 at 4.0 cM [3.72 logarithm of odds (LOD)] and 19 at 34.4 cM (3.63 LOD). For posttraining work significant QTL were located on chromosomes 3 at 60 cM (4.66 LOD) and 14 at 26 cM (4.99 LOD). Suggestive QTL for changes in work were found on chromosomes 11 at 44.6 cM (2.30 LOD) and 14 at 36 cM (2.25 LOD). When pretraining work was used as a covariate, a potential QTL for change in work was identified on chromosome 6 at 68 cM (3.56 LOD). These data indicate that one or more QTL determine exercise capacity and training responses in mice. Furthermore, these data suggest that the genes that determine pretraining work and training responses may differ.


Asunto(s)
Ratones Endogámicos/genética , Condicionamiento Físico Animal , Sitios de Carácter Cuantitativo/genética , Animales , Peso Corporal/genética , Cruzamientos Genéticos , Femenino , Estudio de Asociación del Genoma Completo , Corazón/anatomía & histología , Masculino , Ratones , Tamaño de los Órganos/genética , Análisis de Regresión
17.
Circulation ; 119(11): 1524-32, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19273721

RESUMEN

BACKGROUND: The G-protein-coupled receptor kinase interacting protein-1 (GIT1) is a multidomain scaffold protein that participates in many cellular functions including receptor internalization, focal adhesion remodeling, and signaling by both G-protein-coupled receptors and tyrosine kinase receptors. However, there have been no in vivo studies of GIT1 function to date. METHODS AND RESULTS: To determine essential functions of GIT1 in vivo, we generated a traditional GIT1 knockout mouse. GIT1 knockout mice exhibited approximately 60% perinatal mortality. Pathological examination showed that the major abnormality in GIT1 knockout mice was impaired lung development characterized by markedly reduced numbers of pulmonary blood vessels and increased alveolar spaces. Given that vascular endothelial growth factor (VEGF) is essential for pulmonary vascular development, we investigated the role of GIT1 in VEGF signaling in the lung and cultured endothelial cells. Because activation of phospholipase-Cgamma (PLCgamma) and extracellular signal-regulated kinases 1/2 (ERK1/2) by angiotensin II requires GIT1, we hypothesized that GIT1 mediates VEGF-dependent pulmonary angiogenesis by modulating PLCgamma and ERK1/2 activity in endothelial cells. In cultured endothelial cells, knockdown of GIT1 decreased VEGF-mediated phosphorylation of PLCgamma and ERK1/2. PLCgamma and ERK1/2 activity in lungs from GIT1 knockout mice was reduced postnatally. CONCLUSIONS: Our data support a critical role for GIT1 in pulmonary vascular development by regulating VEGF-induced PLCgamma and ERK1/2 activation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Neovascularización Fisiológica/fisiología , Alveolos Pulmonares/anomalías , Arteria Pulmonar/anomalías , Venas Pulmonares/anomalías , Animales , Animales Recién Nacidos , División Celular/fisiología , Células Cultivadas , ADN/biosíntesis , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfolipasa C gamma/metabolismo , Fosforilación/fisiología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/fisiología , Arteria Pulmonar/fisiología , Circulación Pulmonar , Venas Pulmonares/fisiología , Transducción de Señal/fisiología , Tasa de Supervivencia , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 28(5): 892-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18292392

RESUMEN

OBJECTIVE: The G protein-coupled receptor (GPCR)-kinase2 interacting protein1 (GIT1) is a scaffold protein involved in angiotensin II (Ang II) signaling. Histone deacetylase-5 (HDAC5) has emerged as an important substrate of calcium/calmodulin-dependent protein kinase II (CamK II) in GPCR signaling. Here we investigated the hypothesis that Ang II-mediated vascular smooth muscle cell (VSMC) gene transcription involves GIT1-CamK II-dependent phosphorylation of HDAC5. METHODS AND RESULTS: Ang II rapidly stimulated phosphorylation of HDAC5 at Ser498 in VSMCs. Knockdown of GIT1 significantly decreased HDAC5 phosphorylation induced by Ang II. The involvement of Src, phospholipase gamma (PLCgamma), and CamK II in GIT1-mediated HDAC5 phosphorylation was demonstrated. The association of GIT1 and CamK II was constitutive but increased after stimulation with Ang II. Moreover, the interaction of GIT1 and CamK II through the ARF GTPase-activating protein (ARF-GAP) and coiled-coil domains of GIT1 was essential for the phosphorylation of HDAC5. Finally, knockdown of GIT1 decreased myocyte enhancer factor 2 transcriptional activity induced by Ang II. CONCLUSIONS: This study identifies a novel function for GIT1 as a mediator of Ang II-induced VSMC gene transcription via a Src-PLCgamma-CamK II-HDAC5 signaling pathway.


Asunto(s)
Angiotensina II/fisiología , Proteínas de Ciclo Celular/metabolismo , Histona Desacetilasas/metabolismo , Músculo Liso Vascular/metabolismo , Fosfoproteínas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Células Cultivadas , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Fosfolipasa C gamma/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transfección , Familia-src Quinasas
19.
Hypertension ; 50(6): 1057-62, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17923589

RESUMEN

Axl, a receptor tyrosine kinase, was recently identified as a novel candidate gene in a genetic model of salt-sensitive hypertension (Sabra rat). Our group first reported that Axl plays a significant role in vascular remodeling in response to injury. Here we investigated the role of Axl in the pathogenesis of hypertension in a deoxycorticosterone acetate (DOCA)-salt model. Hypertension was induced in Axl wild-type (Axl(+/+)) mice and Axl-deficient (Axl(-/-)) mice by uninephrectomy and DOCA-salt for 6 weeks. Controls were uninephrectomized and received tap water and regular chow ad libitum. DOCA-salt treatment increased systolic blood pressure by 25 mm Hg in both genotypes after 1 week. Systolic blood pressure remained significantly elevated in Axl(+/+) DOCA, whereas systolic blood pressure levels in Axl(-/-) DOCA mice were the same as controls at 6 weeks. DOCA-salt increased relative kidney weight and glomerular hypertrophy by 40% compared with controls in both genotypes. Consistent with levels of systolic blood pressure, endothelium-dependent vasorelaxation was impaired in Axl(+/+) DOCA mice compared with Axl(+/+) controls, whereas in Axl(-/-) DOCA mice relaxation responses were similar to Axl(-/-) controls. In addition, endothelium-independent vasorelaxation was improved in Axl(-/-) DOCA mice compared with Axl(+/+) DOCA mice. Nitrotyrosine and phospho-Akt immunoreactivity was significantly reduced in arteries from Axl(-/-) DOCA mice compared with Axl(+/+) DOCA mice. The remodeling index of the mesenteric artery (media:lumen ratio) was significantly increased in Axl(+/+) DOCA mice compared with Axl(-/-) DOCA mice. Finally, increased vascular apoptosis in the Axl(-/-) DOCA mice suggests a likely mechanism for Axl-dependent effects on hypertension. These data strengthen the pathogenic role for Axl in salt-sensitive hypertension.


Asunto(s)
Vasos Sanguíneos/patología , Desoxicorticosterona/farmacología , Hipertensión/patología , Proteínas Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Cloruro de Sodio/farmacología , Animales , Aorta/fisiopatología , Apoptosis , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Inmunohistoquímica , Riñón/patología , Arterias Mesentéricas/patología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas , Sístole/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Tirosina Quinasa del Receptor Axl
20.
J Vasc Res ; 44(6): 504-12, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17664889

RESUMEN

Recently, we showed that genetic factors determine flow-dependent vascular remodeling. Among five inbred mouse strains, the SJL strain developed the largest intima in response to low flow. Because SJL mice have a spontaneous mutation in superoxide dismutase 2 (SOD-2) we tested the hypothesis that strain-specific variations in vascular function are due to alterations in redox and nitric oxide (NO) pathways. Vasorelaxation to acetylcholine was significantly impaired in aortic rings from SJL compared to C3H or FVB mice (up to 40%). Relaxation to the endothelium-independent vasodilator sodium nitroprusside (SNP) in SJL mice was also significantly impaired at low concentrations, with decreases in sensitivity and maximal relaxation to SNP compared to C3H and FVB mice. Western blot analyses showed significantly decreased expression (approximately 40%) of eNOS, PKG and SOD-2 proteins in SJL vasculature compared to C3H. Intact aortas from SJL showed significantly increased nitrotyrosine and decreased SOD-2 expression compared to C3H by immunohistochemistry. Basal levels of superoxide in aortas from SJL were not significantly different than C3H as measured by dihydroethidine. In summary, relatively small alterations in redox (SOD-2) and NO pathways (eNOS and PKG) may contribute to significantly impaired vasorelaxation in SJL mice.


Asunto(s)
Aorta Torácica/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vasodilatación , Acetilcolina/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Técnicas In Vitro , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III , Nitroprusiato/farmacología , Oxidación-Reducción , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Especificidad de la Especie , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasoconstricción , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...