Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 49(16): 5064-5073, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32159540

RESUMEN

This work reports on the synthesis and characterization of a series of mononuclear thiosemicarbazone nickel complexes that display significant catalytic activity for hydrogen production in DMF using trifluoroacetic acid as the proton source. The ligand framework was chemically modified by varying the electron-donating abilities of the para substituents on the phenyl rings, which was expected to impact the capability of the resulting complexes to reduce protons into hydrogen. Over the four nickel complexes that were obtained, the one with the thiomethyl substituent, NiSCH3, was found to overtake the catalytic performances of the parent complex NiOCH3 featuring lower overpotential values and similar maximum turnover frequencies. These results confirm the electronic effects of the ligand on HER when using thiosemicarbazone nickel complexes and support that chemical modifications can tune the catalytic performances of such systems.

2.
Front Chem ; 7: 405, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316966

RESUMEN

In the following work, we carried out a systematic study investigating the behavior of a thiosemicarbazone-nickel (II) complex (NiTSC-OMe) as a molecular catalyst for photo-induced hydrogen production. A comprehensive comparison regarding the combination of three different chromophores with this catalyst has been performed, using [Ir(ppy) 2 (bpy)]PF 6 , [Ru(bpy) 3 ]Cl 2 and [ZnTMePy]PCl 4 as photosensitizers. Thorough evaluation of the parameters affecting the hydrogen evolution experiments (i.e., concentration, pH, solvent nature, and ratio), has been performed in order to probe the most efficient photocatalytic system, which was comprised by NiTSC-OMe and [Ir(ppy) 2 (bpy)]PF 6 as catalyst and chromophore, respectively. The electrochemical together with the photophysical investigation clarified the properties of this photocatalytic system and allowed us to propose a possible reaction mechanism for hydrogen production.

3.
Chem Commun (Camb) ; 54(75): 10594-10597, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30175367

RESUMEN

Various oxidation states of the catalytically active cobalt center in a covalent dyad were electrochemically prepared and the light-induced excited-state processes were studied. Virtually identical deactivation processes are observed, irrespective of the oxidation state of the cobalt center, varying from CoIII to CoI, indicating the absence of oxidative quenching within the dye-catalyst assembly.

4.
Dalton Trans ; 47(31): 10509-10516, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29845182

RESUMEN

A protocol that combines gas chromatography and a high-sensitivity micro Clark-type electrode is described to quantify hydrogen production across gas and solution phases for systems operating at very low currents such as dye-sensitized H2-evolving photocathodes. Data indicate that a significant fraction of H2 remains in aqueous solution even after several hours of experiments. Using this protocol, re-evaluation of a dye-sensitized H2-evolving photocathode based on a dye-catalyst dyad showed a reproducible 66% increase of the faradaic efficiency compared with previously reported headspace GC measurements [Kaeffer et al., J. Am. Chem. Soc., 2016, 138, 12308-12311]. This dyad was based on an organic push-pull dye where donor and acceptor are separated by one thiophene group. Insertion of a second thiophene group between the donor and acceptor led to a more efficient system with 30% improved faradaic efficiency for H2 evolution.

5.
J Am Chem Soc ; 138(38): 12308-12311, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27595317

RESUMEN

Dye-sensitized photoelectrochemical cells (DS-PECs) for water splitting hold promise for the large-scale storage of solar energy in the form of (solar) fuels, owing to the low cost and ease to process of their constitutive photoelectrode materials. The efficiency of such systems ultimately depends on our capacity to promote unidirectional light-driven electron transfer from the electrode substrate to a catalytic moiety. We report here on the first noble-metal free and covalent dye-catalyst assembly able to achieve photoelectrochemical visible light-driven H2 evolution in mildly acidic aqueous conditions when grafted onto p-type NiO electrode substrate.

6.
Dalton Trans ; 45(31): 12539-47, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27436175

RESUMEN

Two metallo-organic dyes were synthesized and used for NiO sensitization in view of their photoelectrochemical applications. The new dyes present an original π-conjugated structure containing the [Ru(dppe)2] metal fragment with a highly delocalized allenylidene ligand on one side and a σ-alkynyl ligand bearing an electron-rich group, i.e. a thiophene or triphenylamine unit, and one or two anchoring functions on the other side. The optoelectronic, electrochemical and photoelectrochemical properties of the dyes were systematically investigated. A broad photoresponse was observed with the absorption maximum at 600 nm. The X-ray crystal structure of one precursor was obtained to elucidate the structural conformation of the organometallic complexes and theoretical calculations were performed in order to address the photophysical properties of the new dyes. These photosensitizers were further implemented in NiO-based photocathodes and tested as photocurrent generators under pertinent aqueous conditions in association with [Co(NH3)5Cl]Cl2 as an irreversible electron acceptor. The dye-sensitized photocathodes provided good photocurrent densities (40 to 60 µA cm(-2)) at neutral pH in phosphate buffer and a high stability was observed for the two dyes.

8.
PLoS One ; 10(6): e0129817, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26069963

RESUMEN

Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications.


Asunto(s)
Ciclohexanonas/química , ADN/química , Sustancias Intercalantes/química
9.
Interface Focus ; 5(3): 20140083, 2015 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26052420

RESUMEN

Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

10.
Biomaterials ; 46: 70-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25678117

RESUMEN

Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 µm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 µm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.


Asunto(s)
Materiales Biocompatibles/química , Embrión no Mamífero/metabolismo , Colorantes Fluorescentes/química , Imagenología Tridimensional , Fotones , Polímeros/química , Espectroscopía Infrarroja Corta , Pez Cebra/embriología , Absorción de Radiación , Animales , Muerte Celular , Supervivencia Celular , Endocitosis , Células HeLa , Humanos , Células Jurkat , Cinética , Microscopía Fluorescente , Fotoblanqueo , Espectrometría de Fluorescencia
11.
Chemistry ; 20(13): 3678-88, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24677330

RESUMEN

New π-conjugated structures are constantly the subject of research in dyes and pigments industry and electronic organic field. In this context, the triphenodioxazine (TPDO) core has often been used as efficient photostable pigments and once integrated in air stable n-type organic field-effect transistor (OFET). However, little attention has been paid to the TPDO core as soluble materials for optoelectronic devices, possibly due to the harsh synthetic conditions and the insolubility of many compounds. To benefit from the photostability of TPDO in dye-sensitized solar cells (DSCs), an original synthetic pathway has been established to provide soluble and dissymmetric molecules applied to a suitable design for the sensitizers of DSC. The study has been pursued by the theoretical modeling of opto-electronic properties, the optical and electronic characterizations of dyes and elaboration of efficient devices. The discovery of new synthetic pathways opens the way to innovative designs of TPDO for materials used in organic electronics.

12.
Bioconjug Chem ; 25(4): 773-87, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24528385

RESUMEN

A family of neutral fluorescent probes was developed, mimicking the overall structure of natural glycolipids in order to optimize their membrane affinity. Nonreducing commercially available di- or trisaccharidic structures were connected to a push-pull chromophore based on dicyanoisophorone electron-accepting group, which proved to fluoresce in the red region with a very large Stokes shift. This straightforward synthetic strategy brought structural variations to a series of probes, which were studied for their optical, biophysical, and biological properties. The insertion properties of the different probes into membranes were evaluated on a model system using the Langmuir monolayer balance technique. Confocal fluorescence microscopy performed on muscle cells showed completely different localizations and loading efficiencies depending on the structure of the probes. When compared to the commercially available ANEPPS, a family of commonly used membrane imaging dyes, the most efficient probes showed a similar brightness, but a sharper pattern was observed. According to this study, compounds bearing one chromophore, a limited size of the carbohydrate moiety, and an overall rod-like shape gave the best results.


Asunto(s)
Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Glicoconjugados/química , Músculo Esquelético/citología , Imagen Óptica , Animales , Color , Colorantes Fluorescentes/síntesis química , Glicoconjugados/síntesis química , Masculino , Ratones , Ratones Endogámicos , Microscopía Confocal , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...