Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ERJ Open Res ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375433

RESUMEN

Introduction: Pulmonary fibrosis is a severe disease which can be familial. A genetic cause can only be found in ∼40% of families. Searching for shared novel genetic variants may aid the discovery of new genetic causes of disease. Methods: Whole-exome sequencing was performed in 152 unrelated patients with a suspected genetic cause of pulmonary fibrosis from the St Antonius interstitial lung disease biobank. Variants of interest were selected by filtering for novel, potentially deleterious variants that were present in at least three unrelated pulmonary fibrosis patients. Results: The novel c.586G>A p.(E196K) variant in the ZCCHC8 gene was observed in three unrelated patients: two familial patients and one sporadic patient, who was later genealogically linked to one of the families. The variant was identified in nine additional relatives with pulmonary fibrosis and other telomere-related phenotypes, such as pulmonary arterial venous malformations, emphysema, myelodysplastic syndrome, acute myeloid leukaemia and dyskeratosis congenita. One family showed incomplete segregation, with absence of the variant in one pulmonary fibrosis patient who carried a PARN variant. The majority of ZCCHC8 variant carriers showed short telomeres in blood. ZCCHC8 protein was located in different lung cell types, including alveolar type 2 (AT2) pneumocytes, the culprit cells in pulmonary fibrosis. AT2 cells showed telomere shortening and increased DNA damage, which was comparable to patients with sporadic pulmonary fibrosis and those with pulmonary fibrosis carrying a telomere-related gene variant, respectively. Discussion: The ZCCHC8 c.586G>A variant confirms the involvement of ZCCHC8 in pulmonary fibrosis and short-telomere syndromes and underlines the importance of including the ZCCHC8 gene in diagnostic gene panels for these diseases.

2.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608681

RESUMEN

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Asunto(s)
Discapacidad Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transducción de Señal/genética , Discapacidad Intelectual/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfopenia/genética
3.
Brain Commun ; 3(4): fcab256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805998

RESUMEN

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.(Leu130Pro) NAA80 genetic variant. Both individuals show progressive high-frequency sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and mild proximal and axial muscle weakness. Based on the molecular structure, we predicted and confirmed the NAA80 c.389T>C, p.(Leu130Pro) variant to result in protein destabilization, causing severely decreased NAA80 protein availability. Concurrently, individuals exhibited a ∼50% decrease of actin acetylation. NAA80 individual derived fibroblasts and peripheral blood mononuclear cells showed increased migration, increased filopodia counts and increased levels of polymerized actin, in agreement with previous observations in NAA80 knock-out cells. Furthermore, the significant clinical overlap between NAA80 individuals and individuals with pathogenic variants in several actin subtypes reflects the general importance of controlled actin dynamics for the inner ear, brain and muscle. Taken together, we describe a new syndrome, caused by NAA80 genetic variants leading to decreased actin acetylation and disrupted associated molecular functions. Our work suggests a crucial role for NAA80-mediated actin dynamics in neuronal health, muscle health and hearing.

4.
Clin Genet ; 98(1): 91-98, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335897

RESUMEN

Pathogenic variants in HNRNPH1 were first reported in 2018. The reported individual, a 13 year old boy with a c.616C>T (p.R206W) variant in the HNRNPH1 gene, was noted to have overlapping symptoms with those observed in HNRNPH2-related X-linked intellectual disability, Bain type (MRXSB), specifically intellectual disability and dysmorphic features. While HNRNPH1 variants were initially proposed to represent an autosomal cause of MRXSB, we report an additional seven cases which identify phenotypic differences from MRXSB. Patients with HNRNPH1 pathogenic variants diagnosed via WES were identified using clinical networks and GeneMatcher. Features unique to individuals with HNRNPH1 variants include distinctive dysmorphic facial features; an increased incidence of congenital anomalies including cranial and brain abnormalities, genitourinary malformations, and palate abnormalities; increased incidence of ophthalmologic abnormalities; and a decreased incidence of epilepsy and cardiac defects compared to those with MRXSB. This suggests that pathogenic variants in HNRNPH1 result in a related, but distinct syndromic cause of intellectual disability from MRXSB, which we refer to as HNRNPH1-related syndromic intellectual disability.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Femenino , Genes Ligados a X/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Síndrome , Adulto Joven
5.
Clin Cancer Res ; 26(2): 505-517, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31649042

RESUMEN

PURPOSE: In breast cancer, response rates to immune therapies are generally low and differ significantly across molecular subtypes, urging a better understanding of immunogenicity and immune evasion. EXPERIMENTAL DESIGN: We interrogated large gene-expression data sets including 867 node-negative, treatment-naïve breast cancer patients (microarray data) and 347 breast cancer patients (whole-genome sequencing and transcriptome data) according to parameters of T cells as well as immune microenvironment in relation to patient survival. RESULTS: We developed a 109-immune gene signature that captures abundance of CD8 tumor-infiltrating lymphocytes (TIL) and is prognostic in basal-like, her2, and luminal B breast cancer, but not in luminal A or normal-like breast cancer. Basal-like and her2 are characterized by highest CD8 TIL abundance, highest T-cell clonality, highest frequencies of memory T cells, and highest antigenicity, yet only the former shows highest expression level of immune and metabolic checkpoints and highest frequency of myeloid suppressor cells. Also, luminal B shows a high antigenicity and T-cell clonality, yet a low abundance of CD8 TILs. In contrast, luminal A and normal-like both show a low antigenicity, and notably, a low and high abundance of CD8 TILs, respectively, which associates with T-cell influx parameters, such as expression of adhesion molecules. CONCLUSIONS: Collectively, our data argue that not only CD8 T-cell presence itself, but rather T-cell clonality, T-cell subset distribution, coinhibition, and antigen presentation reflect occurrence of a CD8 T-cell response in breast cancer subtypes, which have been aborted by distinct T-cell-suppressive mechanisms, providing a rationale for subtype-specific combination immune therapies.


Asunto(s)
Presentación de Antígeno/inmunología , Biomarcadores de Tumor/genética , Neoplasias de la Mama/mortalidad , Linfocitos T CD8-positivos/inmunología , Células Clonales/inmunología , Bases de Datos Genéticas/estadística & datos numéricos , Subgrupos de Linfocitos T/inmunología , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Pronóstico , Receptor ErbB-2/metabolismo , Tasa de Supervivencia , Microambiente Tumoral/inmunología
7.
Mol Metab ; 20: 115-127, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30595551

RESUMEN

OBJECTIVE: The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS: We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS: PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS: Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.


Asunto(s)
Lipodistrofia Parcial Familiar/genética , Mutación Missense , PPAR gamma/genética , Adulto , Sitios de Unión , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Células HEK293 , Humanos , Lipodistrofia Parcial Familiar/patología , PPAR gamma/química , PPAR gamma/metabolismo , Fenotipo , Multimerización de Proteína
8.
Front Physiol ; 9: 1363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319454

RESUMEN

Genetic lipodystrophies are a group of rare syndromes associated with major metabolic complications - including severe insulin resistance, type 2 diabetes mellitus, and hypertriglyceridemia - which are classified according to the distribution of adipose tissue. Lipodystrophies can be present at birth or develop during life and can range from local to partial and general. With at least 18 different genes implicated so far, definite diagnosis can be challenging due to clinical and genetic heterogeneity. In an adult female patient with clinical and metabolic features of partial lipodystrophy we identified via whole genome sequencing (WGS) a single complex AGPAT2 allele [V67M;V167A], functionally equivalent to heterozygosity. AGPAT2 encodes for an acyltransferase implicated in the biosynthesis of triacylglycerol and glycerophospholipids. So far homozygous and compound heterozygous mutations in AGPAT2 have only been associated with generalized lipodystrophy. A SNP risk score analysis indicated that the index patient is not predisposed to lipodystrophy based on her genetic background. The partial phenotype in our patient is therefore more likely associated to the genetic variants in AGPAT2. To test whether the resulting double-mutant AGPAT2 protein is functional we analyzed its in vitro enzymatic activity via mass spectrometry. The resulting AGPAT2 double mutant is enzymatically inactive. Our data support the view that the current classification of lipodystrophies as strictly local, partial or generalized may have to be re-evaluated and viewed more as a continuum, both in terms of clinical presentation and underlying genetic causes. Better molecular understanding of lipodystrophies may lead to new therapies to treat adipose tissue dysfunction in common and rare diseases.

9.
J Med Genet ; 55(9): 578-586, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29970488

RESUMEN

BACKGROUND: Obesity is a global and severe health problem. Due to genetic heterogeneity, the identification of genetic defects in patients with obesity can be time consuming and costly. Therefore, we developed a custom diagnostic targeted next-generation sequencing (NGS)-based analysis to simultaneously identify mutations in 52 obesity-related genes. The aim of this study was to assess the diagnostic yield of this approach in patients with suspected genetic obesity. METHODS: DNA of 1230 patients with obesity (median BMI adults 43.6 kg/m2; median body mass index-SD children +3.4 SD) was analysed in the genome diagnostics section of the Department of Genetics of the UMC Utrecht (The Netherlands) by targeted analysis of 52 obesity-related genes. RESULTS: In 48 patients pathogenic mutations confirming the clinical diagnosis were detected. The majority of these were observed in the MC4R gene (18/48). In an additional 67 patients a probable pathogenic mutation was identified, necessitating further analysis to confirm the clinical relevance. CONCLUSIONS: NGS-based gene panel analysis in patients with obesity led to a definitive diagnosis of a genetic obesity disorder in 3.9% of obese probands, and a possible diagnosis in an additional 5.4% of obese probands. The highest yield was achieved in a selected paediatric subgroup, establishing a definitive diagnosis in 12 out of 164 children with severe early onset obesity (7.3%). These findings give a realistic insight in the diagnostic yield of genetic testing for patients with obesity and could help these patients to receive (future) personalised treatment.


Asunto(s)
Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación , Obesidad/genética , Polimorfismo Genético , Adolescente , Adulto , Anciano , Índice de Masa Corporal , Niño , Preescolar , Femenino , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Países Bajos , Obesidad/diagnóstico , Linaje , Análisis de Secuencia de ADN , Adulto Joven
10.
Gastroenterology ; 155(1): 130-143.e15, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29604290

RESUMEN

BACKGROUND & AIMS: Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids. METHODS: We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients. Organoids were generated from duodenal biopsies from 3 patients and 3 healthy individuals (controls). Caco-2 cells and patient-derived dermal fibroblasts were transfected or transduced with vectors that express full-length or mutant forms of DGAT1 or full-length DGAT2. We performed CRISPR/Cas9-guided disruption of DGAT1 in control intestinal organoids. Cells and organoids were analyzed by immunoblot, immunofluorescence, flow cytometry, chromatography, quantitative real-time polymerase chain reaction, and for the activity of caspases 3 and 7. RESULTS: In the 10 patients, we identified 5 bi-allelic loss-of-function mutations in DGAT1. In patient-derived fibroblasts and organoids, the mutations reduced expression of DGAT1 protein and altered triacylglycerol metabolism, resulting in decreased lipid droplet formation after oleic acid addition. Expression of full-length DGAT2 in patient-derived fibroblasts restored formation of lipid droplets. Organoids derived from patients with DGAT1 mutations were more susceptible to lipid-induced cell death than control organoids. CONCLUSIONS: We identified a large cohort of patients with congenital diarrheal disorders with mutations in DGAT1 that reduced expression of its product; dermal fibroblasts and intestinal organoids derived from these patients had altered lipid metabolism and were susceptible to lipid-induced cell death. Expression of full-length wildtype DGAT1 or DGAT2 restored normal lipid metabolism in these cells. These findings indicate the importance of DGAT1 in fat metabolism and lipotoxicity in the intestinal epithelium. A fat-free diet might serve as the first line of therapy for patients with reduced DGAT1 expression. It is important to identify genetic variants associated with congenital diarrheal disorders for proper diagnosis and selection of treatment strategies.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Duodeno/metabolismo , Fibroblastos/metabolismo , Hipoalbuminemia/genética , Trastornos del Metabolismo de los Lípidos/genética , Organoides/metabolismo , Enteropatías Perdedoras de Proteínas/genética , Células CACO-2 , Estudios de Casos y Controles , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Niño , Preescolar , Consanguinidad , Dermis/citología , Diacilglicerol O-Acetiltransferasa/deficiencia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Países Bajos , Forboles , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Turquía
11.
PLoS One ; 11(4): e0153323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27115612

RESUMEN

BACKGROUND: While RB1 loss initiates retinoblastoma development, additional somatic copy number alterations (SCNAs) can drive tumor progression. Although SCNAs have been identified with good concordance between studies at a cytoband resolution, accurate identification of single genes for all recurrent SCNAs is still challenging. This study presents a comprehensive meta-analysis of genome-wide SCNAs integrated with gene expression profiling data, narrowing down the list of plausible retinoblastoma driver genes. METHODS: We performed SCNA profiling of 45 primary retinoblastoma samples and eight retinoblastoma cell lines by high-resolution microarrays. We combined our data with genomic, clinical and histopathological data of ten published genome-wide SCNA studies, which strongly enhanced the power of our analyses (N = 310). RESULTS: Comprehensive recurrence analysis of SCNAs in all studies integrated with gene expression data allowed us to reduce candidate gene lists for 1q, 2p, 6p, 7q and 13q to a limited gene set. Besides the well-established driver genes RB1 (13q-loss) and MYCN (2p-gain) we identified CRB1 and NEK7 (1q-gain), SOX4 (6p-gain) and NUP205 (7q-gain) as novel retinoblastoma driver candidates. Depending on the sample subset and algorithms used, alternative candidates were identified including MIR181 (1q-gain) and DEK (6p gain). Remarkably, our study showed that copy number gains rarely exceeded change of one copy, even in pure tumor samples with 100% homozygosity at the RB1 locus (N = 34), which is indicative for intra-tumor heterogeneity. In addition, profound between-tumor variability was observed that was associated with age at diagnosis and differentiation grades. INTERPRETATION: Since focal alterations at commonly altered chromosome regions were rare except for 2p24.3 (MYCN), further functional validation of the oncogenic potential of the described candidate genes is now required. For further investigations, our study provides a refined and revised set of candidate retinoblastoma driver genes.


Asunto(s)
Dosificación de Gen , Neoplasias de la Retina/genética , Retinoblastoma/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncogenes , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética
12.
Sci Rep ; 6: 25264, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126562

RESUMEN

Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control.


Asunto(s)
Dosificación de Gen , Mutación , Proteínas de Unión a Retinoblastoma/genética , Retinoblastoma/patología , Ubiquitina-Proteína Ligasas/genética , Humanos , Análisis de Secuencia de ADN
13.
BMC Cancer ; 15: 877, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26553136

RESUMEN

BACKGROUND: CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. METHODS: We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. RESULTS: High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. CONCLUSIONS: In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.


Asunto(s)
Neoplasias de la Mama/genética , Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad , Anciano , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN , Femenino , Genómica , Humanos , Pérdida de Heterocigocidad/genética , Persona de Mediana Edad , Países Bajos , Eliminación de Secuencia
14.
Am J Hum Genet ; 97(4): 621-6, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26387593

RESUMEN

Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs(∗)8], c.1779dupT [p.Glu594(∗)], and c.2224_2225dupTT [p.Leu742Phefs(∗)7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein's signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/ß-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.


Asunto(s)
Anodoncia/genética , Exoma/genética , Genes Dominantes , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Mutación/genética , Proteínas Wnt/genética , Anodoncia/patología , Estudios de Casos y Controles , Femenino , Células HEK293 , Humanos , Masculino , Linaje , Fenotipo
15.
Mol Oncol ; 9(4): 877-88, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616998

RESUMEN

INTRODUCTION: BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION: This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Mutación/genética , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN/genética , Femenino , Citometría de Flujo , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
16.
Genes Chromosomes Cancer ; 53(1): 1-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24249257

RESUMEN

Both hereditary and nonhereditary retinoblastoma (Rb) are commonly initiated by loss of both copies of the retinoblastoma tumor suppressor gene (RB1), while additional genomic changes are required for tumor initiation and progression. Our aim was to determine whether there is genomic heterogeneity between different clinical Rb subtypes. Therefore, 21 Rb tumors from 11 hereditary patients and 10 nonhereditary Rb patients were analyzed using high-resolution single nucleotide polymorphism (SNP) arrays and gene losses and gains were validated with Multiplex Ligation-dependent Probe Amplification. In these tumors only a few focal aberrations were detected. The most frequent was a focal gain on chromosome 2p24.3, the minimal region of gain encompassing the oncogene MYCN. The genes BAZ1A, OTX2, FUT8, and AKT1 were detected in four focal regions on chromosome 14 in one nonhereditary Rb. There was a large difference in number of copy number aberrations between tumors. A subset of nonhereditary Rbs turned out to be the most genomic unstable, while especially very young patients with hereditary Rb display stable genomes. Established Rb copy number aberrations, including gain of chromosome arm 1q and loss of chromosome arm 16q, turned out to be preferentially associated with the nonhereditary Rbs with later age of diagnosis. In contrast, copy number neutral loss of heterozygosity was detected mainly on chromosome 13, where RB1 resides, irrespective of hereditary status or age. Focal amplifications and deletions and copy number neutral loss of heterozygosity besides chromosome 13 appear to be rare events in retinoblastoma.


Asunto(s)
Inestabilidad Genómica , Polimorfismo de Nucleótido Simple , Neoplasias de la Retina/genética , Retinoblastoma/genética , Preescolar , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 14/genética , Análisis por Conglomerados , Femenino , Dosificación de Gen , Genes de Retinoblastoma , Humanos , Lactante , Pérdida de Heterocigocidad , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
17.
Mol Cell Proteomics ; 11(7): M111.013334, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366898

RESUMEN

Breast cancer 1, early onset (BRCA1) hereditary breast cancer, a type of cancer with defects in the homology-directed DNA repair pathway, would benefit from the identification of proteins for diagnosis, which might also be of potential use as screening, prognostic, or predictive markers. Sporadic breast cancers with defects in the BRCA1 pathway might also be diagnosed. We employed proteomics based on one-dimensional gel electrophoresis in combination with nano-LC-MS/MS and spectral counting to compare the protein profiles of mammary tumor tissues of genetic mouse models either deficient or proficient in BRCA1. We identified a total of 3,545 proteins, of which 801 were significantly differentially regulated between the BRCA1-deficient and -proficient breast tumors. Pathway and protein complex analysis identified DNA repair and related functions as the major processes associated with the up-regulated proteins in the BRCA1-deficient tumors. In addition, by selecting highly connected nodes, we identified a BRCA1 deficiency signature of 45 proteins that enriches for homology-directed DNA repair deficiency in human gene expression breast cancer data sets. This signature also exhibits prognostic power across multiple data sets, with optimal performance in a data set enriched in tumors deficient in homology-directed DNA repair. In conclusion, by comparing mouse proteomes from BRCA1-proficient and -deficient mammary tumors, we were able to identify several markers associated with BRCA1 deficiency and a prognostic signature for human breast cancer deficient in homology-directed DNA repair.


Asunto(s)
Proteína BRCA1/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Reparación del ADN , Neoplasias Mamarias Animales/genética , Proteínas de Neoplasias/genética , Animales , Proteína BRCA1/deficiencia , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/mortalidad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/diagnóstico , Ratones , Análisis por Micromatrices , Familia de Multigenes , Mutación , Mapeo de Interacción de Proteínas , Proteoma , Proteómica , Homología de Secuencia de Aminoácido , Análisis de Supervivencia , Espectrometría de Masas en Tándem
18.
Dev Dyn ; 233(3): 1076-82, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15895405

RESUMEN

We identified and characterized the chicken natriuretic peptide precursor gene cluster and found its organization to be highly conserved compared with the mammalian Nppb-Nppa cluster. However, phylogenetic analysis indicated that the putative chicken natriuretic peptide precursor genes are the homologues of CNP-3 and Nppb, respectively. Comparative expression analysis revealed that, in human, mouse, and rat hearts, Nppb is a novel marker for the differentiating working myocardium. Its expression pattern is strikingly similar to that of Nppa before birth, and diverges only after birth. In contrast, whereas the chicken Nppb gene expression profile resembled that of mammalian Nppb, the CNP-3 gene showed very limited expression in the heart, not resembling the pattern of either Nppa or Nppb. These results show that, in chicken, the Nppa gene has been lost from the natriuretic peptide precursor gene cluster, whereas the CNP-3 gene has been retained.


Asunto(s)
Factor Natriurético Atrial/genética , Proteínas Aviares/genética , Pollos/genética , Evolución Molecular , Familia de Multigenes/genética , Péptido Natriurético Tipo-C/genética , Secuencia de Aminoácidos , Animales , Factor Natriurético Atrial/clasificación , Proteínas Aviares/química , Proteínas Aviares/clasificación , Secuencia de Bases , Embrión de Pollo , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Humanos , Ratones , Datos de Secuencia Molecular , Miocardio/metabolismo , Péptido Natriurético Tipo-C/química , Péptido Natriurético Tipo-C/clasificación , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...