Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep ; 40(6): 111177, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947955

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Hidrazinas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triazoles , Proteína p53 Supresora de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(15): 7533-7542, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30898885

RESUMEN

Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-met/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
NPJ Syst Biol Appl ; 3: 27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28944080

RESUMEN

Targeted therapies have shown significant patient benefit in about 5-10% of solid tumors that are addicted to a single oncogene. Here, we explore the idea of ligand addiction as a driver of tumor growth. High ligand levels in tumors have been shown to be associated with impaired patient survival, but targeted therapies have not yet shown great benefit in unselected patient populations. Using an approach of applying Bagged Decision Trees (BDT) to high-dimensional signaling features derived from a computational model, we can predict ligand dependent proliferation across a set of 58 cell lines. This mechanistic, multi-pathway model that features receptor heterodimerization, was trained on seven cancer cell lines and can predict signaling across two independent cell lines by adjusting only the receptor expression levels for each cell line. Interestingly, for patient samples the predicted tumor growth response correlates with high growth factor expression in the tumor microenvironment, which argues for a co-evolution of both factors in vivo.

4.
NPJ Syst Biol Appl ; 3: 16034, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725482

RESUMEN

The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR/ErbB1), human EGFR 2 (HER2/ErbB2), ErbB3/HER3, and ErbB4/HER4. The first two members of this family, EGFR and HER2, have been implicated in tumorigenesis and cancer progression for several decades, and numerous drugs have now been approved that target these two proteins. Less attention, however, has been paid to the role of this family in mediating cancer cell survival and drug tolerance. To better understand the complex signal transduction network triggered by the ErbB receptor family, we built a computational model that quantitatively captures the dynamics of ErbB signaling. Sensitivity analysis identified ErbB3 as the most critical activator of phosphoinositide 3-kinase (PI3K) and Akt signaling, a key pro-survival pathway in cancer cells. Based on this insight, we designed a fully human monoclonal antibody, seribantumab (MM-121), that binds to ErbB3 and blocks signaling induced by the extracellular growth factors heregulin (HRG) and betacellulin (BTC). In this article, we present some of the key preclinical simulations and experimental data that formed the scientific foundation for three Phase 2 clinical trials in metastatic cancer. These trials were designed to determine if patients with advanced malignancies would derive benefit from the addition of seribantumab to standard-of-care drugs in platinum-resistant/refractory ovarian cancer, hormone receptor-positive HER2-negative breast cancer, and EGFR wild-type non-small cell lung cancer (NSCLC). From preclinical studies we learned that basal levels of ErbB3 phosphorylation correlate with response to seribantumab monotherapy in mouse xenograft models. As ErbB3 is rapidly dephosphorylated and hence difficult to measure clinically, we used the computational model to identify a set of five surrogate biomarkers that most directly affect the levels of p-ErbB3: HRG, BTC, EGFR, HER2, and ErbB3. Preclinically, the combined information from these five markers was sufficient to accurately predict which xenograft models would respond to seribantumab, and the single-most accurate predictor was HRG. When tested clinically in ovarian, breast and lung cancer, HRG mRNA expression was found to be both potentially prognostic of insensitivity to standard therapy and potentially predictive of benefit from the addition of seribantumab to standard of care therapy in all three indications. In addition, it was found that seribantumab was most active in cancers with low levels of HER2, consistent with preclinical predictions. Overall, our clinical studies and studies of others suggest that HRG expression defines a drug-tolerant cancer cell phenotype that persists in most solid tumor indications and may contribute to rapid clinical progression. To our knowledge, this is the first example of a drug designed and clinically tested using the principles of Systems Biology.

5.
ACS Med Chem Lett ; 3(12): 1034-1038, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23256033

RESUMEN

The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 µM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33.

6.
Proc Natl Acad Sci U S A ; 109(8): 2860-5, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22323609

RESUMEN

Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.


Asunto(s)
Isoquinolinas/química , Neoplasias/enzimología , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Bioensayo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoquinolinas/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas p21(ras) , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Blood ; 118(13): 3613-21, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21813452

RESUMEN

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.


Asunto(s)
Dosificación de Gen/fisiología , Duplicación de Gen/fisiología , Pérdida de Heterocigocidad/fisiología , Proteínas de la Membrana/genética , Trastornos Mieloproliferativos/genética , Tirosina Quinasa 3 Similar a fms/fisiología , Alelos , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células de la Médula Ósea/fisiología , Proliferación Celular , Células Cultivadas , Técnicas de Sustitución del Gen , Pérdida de Heterocigocidad/genética , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Secuencias Repetidas en Tándem/genética , Secuencias Repetidas en Tándem/fisiología , Tirosina Quinasa 3 Similar a fms/metabolismo
8.
J Biol Chem ; 286(13): 10918-29, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21262971

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.


Asunto(s)
Transducción de Señal/fisiología , Tirosina Quinasa 3 Similar a fms/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Activación Enzimática/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Leucemia/genética , Leucemia/metabolismo , Masculino , Ratones , Mutación Missense , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
9.
Cell Signal ; 21(12): 1717-26, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19540337

RESUMEN

Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Humanos , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-kit/genética , Transducción de Señal/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética
10.
Br J Haematol ; 146(2): 193-202, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19438505

RESUMEN

The haematopoietic growth factor receptor Flt3 has been implicated as major cause of transformation in acute myeloid leukaemia. Intracellular signals mediated by wild-type Flt3 are involved in cell differentiation and survival whereas signalling via the mutant Flt3 ITD (internal tandem duplication) promotes enhanced cell growth. In this study, we identified tyrosines 768, 955 and 969 of Flt3 as phosphorylation sites and mediators of growth factor receptor binding protein 2 (Grb2) interaction, leading to the association of Grb2 associated binder 2 (Gab2) and contributing to proliferation and survival. Ba/F3 cells were transfected with either the wild-type Flt3 or the ITD, with or without a triple mutation of the Grb2 binding sites, and characterised in terms of proliferation and viability. Interestingly, the Flt3 ITD promoted increased survival but after introducing the triple mutation, this phenotype was lost. When looking into different downstream pathways, this effect was mainly caused by decreased phosphoinositide 3-kinase and Stat5 signalling, and the Flt3 ITD carrying the Grb2 binding mutations showed less Akt and Stat5 activation compared to the regular Flt3 ITD receptor. These findings not only reveal novel phosphorylation sites in Flt3 but contribute to the understanding of the molecular mechanism by which Flt3 ITD functions in pathological conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Leucemia Mieloide Aguda/metabolismo , Factor de Transcripción STAT5/metabolismo , Tirosina/fisiología , Tirosina Quinasa 3 Similar a fms/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Sitios de Unión , Supervivencia Celular , Transformación Celular Neoplásica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Fosforilación , Transducción de Señal , Células Tumorales Cultivadas
11.
Exp Hematol ; 37(8): 979-89, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19477218

RESUMEN

OBJECTIVE: Fms-like tyrosine kinase-3 (Flt3), a growth factor receptor normally expressed in hematopoietic progenitor cells, has been shown to have an important role in development of acute myeloid leukemia (AML) due to activating mutations. Flt3 mutations are found in approximately one-third of AML patients and correlate with a poor prognosis, thus making the Flt3 receptor a potential therapeutic target. The aim of the investigation was to analyze the kinetics and specificity of Flt3 autophosphorylation in wild-type Flt3 as well as in oncogenic Flt3 mutants. MATERIALS AND METHODS: We have used Ba/F3 cells stably expressing either wild-type, internal tandem duplication, or D835Y mutants of Flt3 in order to compare the site selectivity of tyrosine phosphorylation sites. By the use of a panel of phosphospecific antibodies directed against potential tyrosine phosphorylation sites in Flt3, we identified several novel phosphorylation sites in Flt3 and studied the kinetics and specificity of ligand-induced phosphorylation in living cells. RESULTS: Eight phosphorylated tyrosines (pY589, pY591, pY599, pY726, pY768, pY793, pY842, and pY955) were investigated and shown to be differentially phosphorylated in the wild-type versus the mutated receptors. Furthermore, we show that tyrosines 726, 793, and 842 are novel phosphorylation sites of Flt3 in intact cells. CONCLUSION: In this study, we have looked at the site-specific phosphorylation in the wild-type Flt3 in comparison to the mutants found in AML. We observed not only quantitative changes but, more importantly, qualitative differences in the phosphorylation patterns of the wild-type and the mutated Flt3 receptors, which might enhance the understanding of the mechanisms by which Flt3 contributes to AML in patients with mutations in Flt3.


Asunto(s)
Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Sitios de Unión , Línea Celular , Mapeo Epitopo , Cinética , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/genética , Fosforilación/genética , Especificidad por Sustrato/genética
12.
Blood ; 113(17): 4063-73, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19144992

RESUMEN

Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the beta-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA interference technology, deregulated MCL-1 protein expression was shown to play a major role in conferring the resistance phenotype of 32D_ITD627E cells. Enhanced and sustained binding of the adaptor protein GRB-2 to the FLT3_ITD627E receptor is involved in MCL-1 up-regulation and is independent from TKI (PKC412)-induced inhibition of the receptor kinase. Thus, we describe a new mechanism of primary resistance to TKIs, which operates by reprogramming local and distant signal transduction events of the FLT3 tyrosine kinase. The data presented suggest that particular ITDs of FLT3 may be associated with rewired signaling and differential responsiveness to TKIs.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fenotipo , Análisis por Matrices de Proteínas , Transducción de Señal/efectos de los fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacología , Estaurosporina/uso terapéutico , Especificidad por Sustrato , Regulación hacia Arriba/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
13.
Biochem J ; 399(1): 59-67, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16780420

RESUMEN

The ubiquitin E3 ligase Cbl has been shown to negatively regulate tyrosine kinase receptors, including the stem cell factor receptor/c-Kit. Impaired recruitment of Cbl to c-Kit results in a deregulated positive signalling that eventually can contribute to carcinogenesis. Here, we present results showing that Cbl is activated by the SFKs (Src family kinases) and recruited to c-Kit in order to trigger receptor ubiquitination. We demonstrate that phosphorylated Tyr568 and Tyr936 in c-Kit are involved in direct binding and activation of Cbl and that binding of the TKB domain (tyrosine kinase binding domain) of Cbl to c-Kit is specified by the presence of an isoleucine or leucine residue in position +3 to the phosphorylated tyrosine residue on c-Kit. Apart from the direct association between Cbl and c-Kit, we show that phosphorylation of Cbl by SFK members is required for activation of Cbl to occur. Moreover, we demonstrate that Cbl mediates monoubiquitination of c-Kit and that the receptor is subsequently targeted for lysosomal degradation. Taken together, our findings reveal novel insights into the mechanisms by which Cbl negatively regulates c-Kit-mediated signalling.


Asunto(s)
Endocitosis , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-kit/química , Proteínas Proto-Oncogénicas c-kit/metabolismo , Tirosina/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Humanos , Ligandos , Ratones , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Porcinos
14.
Blood ; 108(5): 1542-50, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16684964

RESUMEN

Early signal relay steps upon ligand binding to the receptor tyrosine kinase Flt3 (ie, sites of Flt3 autophosphorylation and subsequent docking partners) are mainly unresolved. By immunoprecipitation of specific tryptic peptides contained in the juxtamembrane region of human Flt3 and subsequent radiosequencing, we identified the tyrosine residues 572, 589, 591, and 599 as in vivo autophosphorylation sites. Focusing on Y589 and Y599, we examined Flt3 ligand (FL)-mediated responses in wild-type-Flt3-(WT-Flt3-), Y589F-Flt3-, and Y599F-Flt3-expressing 32D cells. Compared with WT-Flt3-32D cells upon ligand stimulation, 32D-Y589F-Flt3 showed enhanced Erk activation and proliferation/survival, whereas 32D-Y599F-Flt3 cells hereby displayed substantially diminished responses. Both pY589 and pY599 were identified as association sites for signal relay molecules including Src family kinases and SHP2. Consistently, 32D-Y589F-Flt3 and 32D-Y599F-Flt3 showed decreased FL-triggered activation of Src family kinases. Interference with the Src-dependent negative regulation of Flt3 signaling may account for the enhanced mitogenic response of Y589F-Flt3. Y599 was additionally found to interact with the protein tyrosine phosphatase SHP2 in a phosphorylation-dependent manner. As Y599F-Flt3-32D was unable to associate with and to phosphorylate SHP2 and since silencing of SHP2 in WT-Flt3-expressing cells mimicked the Y599F-Flt3 phenotype, we hypothesize that recruitment of SHP2 to pY599 contributes to FL-mediated Erk activation and proliferation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Familia-src Quinasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , División Celular , Supervivencia Celular , Humanos , Interleucina-3/fisiología , Cinética , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección , Tirosina , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...