Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Invest ; 101(11): 1513-1522, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34376778

RESUMEN

Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E. coli), purified and formulated with incomplete Freund's adjuvant (IFA), which lacks bacterial elements. Here, we provide evidence indicating how trace amounts of bacterial contaminants within rhMOG may influence the course and severity of EAE in the cynomolgus macaque immunized with rhMOG/IFA. The residual amount of E. coli contaminants, as detected with mass spectrometry within rhMOG protein stocks, were found to significantly modulate the severity of clinical, radiological, and histologic hallmarks of EAE in macaques. Indeed, animals receiving the purest rhMOG showed milder disease severity, increased numbers of remissions, and reduced brain damage. Histologically, these animals presented a wider diversity of lesion types, including changes in normal-appearing white matter and prephagocytic lesions. Non-human primates EAE model with milder histologic lesions reflect more accurately ADD and permits to study of the pathogenesis of disease initiation and progression.


Asunto(s)
Encefalomielitis Autoinmune Experimental/etiología , Glicoproteína Mielina-Oligodendrócito/aislamiento & purificación , Animales , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Escherichia coli , Femenino , Inmunidad Innata , Macaca fascicularis , Masculino , Proteínas Recombinantes/aislamiento & purificación , Médula Espinal/patología
2.
J Neuroinflammation ; 16(1): 244, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31785610

RESUMEN

BACKGROUND: Autoantibodies against myelin oligodendrocyte glycoprotein (anti-MOG-Abs) occur in a majority of children with acquired demyelinating syndromes (ADS) and physiopathology is still under investigation. As cynomolgus macaques immunized with rhMOG, all develop an experimental autoimmune encephalomyelitis (EAE), we assessed relatedness between anti-MOG-Abs associated diseases in both species. METHODS: The study includes 27 children followed for ADS and nine macaques with rhMOG-induced EAE. MRI lesions, cytokines in blood, and CSF at onset of ADS or EAE, as well as histopathological features of brain lesions were compared. RESULTS: Twelve children with anti-MOG-Abs ADS (ADS MOG+) and nine macaques with EAE, presented increased IL-6 and G-CSF in the CSF, whereas no such signature was found in 15 ADS MOG-. Furthermore, IgG and C1q were associated to myelin and phagocytic cells in brains with EAE (n = 8) and in biopsies of ADS MOG+ (n = 2) but not ADS MOG- children (n = 1). Macaque brains also revealed prephagocytic lesions with IgG and C1q depositions but no leukocyte infiltration. CONCLUSIONS: Children with ADS MOG+ and macaques with EAE induced with rhMOG, present a similar cytokine signature in the CSF and a comparable aspect of brain lesions indicating analogous pathophysiological processes. In EAE, prephagocytic lesions points at IgG as an initial effector of myelin attack. These results support the pertinence of modeling ADS MOG+ in non-human primates to apprehend the natural development of anti-MOG-associated disease, find markers of evolution, and above all explore the efficacy of targeted therapies to test primate-restricted molecules.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Glicoproteína Mielina-Oligodendrócito/sangre , Adolescente , Animales , Autoanticuerpos/líquido cefalorraquídeo , Niño , Preescolar , Enfermedades Desmielinizantes/líquido cefalorraquídeo , Encefalomielitis Autoinmune Experimental/líquido cefalorraquídeo , Femenino , Humanos , Macaca , Masculino , Glicoproteína Mielina-Oligodendrócito/líquido cefalorraquídeo
3.
EBioMedicine ; 47: 492-505, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31492559

RESUMEN

BACKGROUND: Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. METHODS: We implemented a preclinical scheme to foster immune tolerance to myelin oligodendrocyte glycoprotein (MOG), in a cynomolgus-macaque model of experimental autoimmune encephalomyelitis (EAE), in which administration of recombinant human MOG (rhMOG) elicits brain inflammation mediated by MOG-autoreactive CD4+ lymphocytes and anti-MOG IgG. For immunotherapy, we used a recombinant antibody (Ab) directed against the dendritic cell-asialoglycoprotein receptor (DC-ASGPR) fused either to MOG or a control antigen PSA (prostate-specific antigen). FINDINGS: rhMOG and the anti-DC-ASGPR-MOG were respectively detected in CD1a+ DCs or CD163+ cells in the skin of macaques. Intradermal administration of anti-DC-ASGPR-MOG, but not control anti-DC-ASGPR-PSA, was protective against EAE. The treatment prevented the CD4+ T cell activation and proinflammatory cytokine production observed in controls. Moreover, the administration of anti-DC-ASGPR-MOG induced MOG-specific CD4+CD25+FOXP3+CD39+ regulatory lymphocytes and favoured an upsurge in systemic TGFß and IL-8 upon rhMOG re-administration in vivo. INTERPRETATION: We show that the delivery of an anti-DC-ASGPR-MOG allows antigen-specific adaptive immune modulation to prevent the breach of immune tolerance to MOG. Our findings pave the way for therapeutic vaccines for long-lasting remission to grave encephalomyelitis with identified autoantigens, such as ADD associated with anti-MOG autoantibodies. FUND: Work supported by the French ANR (ANR-11-INBS-0008 and ANR-10-EQPX-02-01), NIH (NIH 1 R01 AI 105066), the Baylor Scott and White Healthcare System funding and Roche Research Collaborative grants.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Glicoproteína Mielina-Oligodendrócito/inmunología , Vacunas/inmunología , Animales , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/diagnóstico , Humanos , Linfocitos/inmunología , Linfocitos/metabolismo , Macaca , Glicoproteína Mielina-Oligodendrócito/antagonistas & inhibidores , Fenotipo , Proteínas Recombinantes , Vacunación , Vacunas/administración & dosificación
4.
Mol Ther Nucleic Acids ; 3: e213, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25462529

RESUMEN

HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues. To address part of these questions, HIV-derived vectors have been engineered to be nonintegrating. This was mainly achieved by mutating HIV-1 integrase at functional hotspots of the enzyme enabling the development of streamlined nuclear DNA circles functional for transgene expression. Few integrase mutant vectors have been successfully tested so far for gene transfer. They are cleared with time in mitotic cells, but stable within nondividing retina cells or neurons. Here, we compared six HIV vectors carrying different integrases, either wild type or with different mutations (D64V, D167H, Q168A, K186Q+Q214L+Q216L, and RRK262-264AAH) shown to modify integrase enzymatic activity, oligomerization, or interaction with key cellular cofactor of HIV DNA integration as LEDGF/p75 or TNPO3. We show that these mutations differently affect the transduction efficiency as well as rates and patterns of integration of HIV-derived vectors suggesting their different processing in the nucleus. Surprisingly and most interestingly, we report that an integrase carrying the D167H substitution improves vector transduction efficiency and integration in both HEK-293T and primary CD34+ cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...