Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 10: 258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972004

RESUMEN

Transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) are an established proxy of corticospinal excitability. As a binary measure, the presence (MEP+) or absence (MEP-) of ipsilesional hemisphere MEPs early following stroke is a robust indicator of long-term recovery, however this measure does not provide information about spatial cortical reorganization. MEPs have been systematically acquired over the sensorimotor cortex to "map" motor topography. In this investigation we compared the degree to which functional improvements resulting from early (<3 months post-stroke) intensive hand focused upper limb rehabilitation correlate with changes in motor topography between MEP+ and MEP- individuals. Following informed consent, 17 individuals (4 Female, 60.3 ± 9.4 years, 24.6 ± 24.01 days post first time stroke) received 8 one hour-sessions of training with virtual reality (VR)/Robotic simulations. Clinical tests [Box and Blocks Test (BBT), Wolf Motor Function Test (WMFT), Upper Extremity Fugl-Meyer (UEFMA)], kinematic and kinetic assessments [finger Active Range of Motion (finger AROM), Maximum Pinch Force (MPF)], and bilateral TMS mapping of 5 hand muscles were performed prior to (PRE), directly following (POST), and 1 month following (1M) training. Participants were divided into two groups (MEP+, MEP-) based on whether an MEP was present in the affected first dorsal interosseous (FDI) at any time point. MEP+ individuals improved significantly more than MEP- individuals from PRE to 1M on the WMFT, BBT, and finger AROM scores. Ipsilesional hemisphere FDI area increased significantly with time in the MEP+ group. FDI area of the contralesional hemisphere was not significantly different across time points or groups. In the MEP+ group, significant correlations were observed between PRE-1M changes in ipsilesional FDI area and WMFT, BBT, and finger AROM, and contralesional FDI area and UEFMA and MPF. In the MEP- group, no significant correlations were found between changes in contralesional FDI area and functional outcomes. We report preliminary evidence in a small sample that patterns of recovery and the association of recovery to bilateral changes in motor topography may depend on integrity of the ipsilesional cortical spinal tract as assessed by the presence of TMS evoked MEPs.

2.
Disabil Rehabil ; 39(15): 1524-1531, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27669997

RESUMEN

PURPOSE: The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. METHODS: This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. RESULTS: Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. CONCLUSION: This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.


Asunto(s)
Destreza Motora/fisiología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Telerrehabilitación/métodos , Femenino , Dedos/fisiopatología , Fuerza de la Mano , Humanos , Persona de Mediana Edad , Movimiento , Recuperación de la Función , Robótica , Resultado del Tratamiento , Terapia de Exposición Mediante Realidad Virtual
3.
Disabil Rehabil ; 39(15): 1515-1523, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27636200

RESUMEN

PURPOSE: Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. METHODS: Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. RESULTS: The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. CONCLUSION: This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.


Asunto(s)
Mano/fisiopatología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Terapia de Exposición Mediante Realidad Virtual , Anciano , Femenino , Fuerza de la Mano , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora , Movimiento , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...