Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 301: 113861, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34601351

RESUMEN

Air pollution is commonly disregarded as a source of nutrient loading to impaired surface waters managed under the Clean Water Act per states' 303(d) list programs. The contribution of air pollution to 2017-2018 South Platte River nitrogen (N) loads was estimated from the headwaters to the gage at Weldona, Colorado, USA (100 km downstream of Denver), using data from the National Atmospheric Deposition Program (NADP) and the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model. The NADP offers wet-deposition raster created by spatial interpolation of data collected from regionally representative monitoring sites, excluding the influences from urban site data. For this study, NADP wet-deposition data obtained from sites within the Denver-Boulder, Colorado, urban corridor were included and excluded in new spatial interpolations of wet-deposition raster, which were used as input for SPARROW to model the influence of urban air pollution sources on South Platte River loads. Because urban air pollution is already incorporated into the NADP Total Deposition modeling methodology, dry N deposition was held constant for each SPARROW modeling scenario when dry deposition was included. By including the urban wet-deposition data in the model, estimated N loading to the South Platte River at Denver increased by 9-11 percent. Factoring in dry deposition at a 1:1.8 dry:wet ratio obtained from the results, urban air pollution was estimated to contribute as much as 20 percent of the nitrate Total Maximum Daily Load for Segment 14 of the South Platte River.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Nitratos/análisis , Nitrógeno/análisis , Ríos
2.
Sci Total Environ ; 566-567: 1621-1631, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27320741

RESUMEN

Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (<0.5µgL(-1)) to 4070µgL(-1), and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted.


Asunto(s)
Sedimentos Geológicos/análisis , Agua Subterránea/química , Selenio/análisis , Contaminantes Químicos del Agua/análisis , Riego Agrícola , Colorado , Monitoreo del Ambiente
3.
Sci Total Environ ; 568: 1157-1170, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27102272

RESUMEN

For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2µg/m(2) per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of "legacy" mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

4.
Environ Sci Technol ; 48(24): 14258-65, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25383864

RESUMEN

Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990 s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.


Asunto(s)
Altitud , Nitratos/química , Nitrógeno/química , Movimientos del Agua , Cambio Climático , Colorado , Ecosistema , Ríos/química
5.
Environ Monit Assess ; 185(11): 9343-59, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23715732

RESUMEN

The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.


Asunto(s)
Monitoreo del Ambiente , Ríos/química , Contaminación Química del Agua/estadística & datos numéricos , Abastecimiento de Agua/estadística & datos numéricos , Clima , Geología , Nitratos/análisis , Suelo/química , Sulfatos/análisis , Árboles , Movimientos del Agua , Humedales
6.
Environ Monit Assess ; 185(9): 7081-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23355020

RESUMEN

This study evaluates the effect of emission reductions at two coal-fired power plants in northwestern Colorado on a nearby wilderness area. Control equipment was installed at both plants during 1999-2004 to reduce SO2 and NOx emissions. One challenge was separating the effects of local from regional emissions, which also declined during the study period. The long-term datasets examined confirm that emission reductions had a beneficial effect on air and water quality in the wilderness. Despite a 75 % reduction in SO2 emissions, sulfate aerosols measured in the wilderness decreased by only 20 %. Because the site is relatively close to the power plants (<75 km), the slow rate of conversion of SO2 to sulfate, particularly under conditions of low relative humidity, might account for this less than one-to-one response. On the clearest days, emissions controls appeared to improve visibility by about 1 deciview, which is a small but perceptible improvement. On the haziest days, however, there was little improvement perhaps reflecting the dominance of regional haze and other components of visibility degradation particularly organic carbon and dust. Sulfate and acidity in atmospheric deposition decreased by 50 % near the southern end of the wilderness of which 60 % was attributed to power plant controls and the remainder to reductions in regional sources. Lake water sulfate responded rapidly to trends in deposition declining at 28 lakes monitored in and near the wilderness. Although no change in the acid-base status was observed, few of the lakes appear to be at risk from chronic or episodic acidification.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Monitoreo del Ambiente , Centrales Eléctricas , Vida Silvestre , Contaminación del Aire/estadística & datos numéricos , Carbón Mineral , Colorado , Conservación de los Recursos Energéticos
7.
Environ Toxicol Chem ; 31(3): 524-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22189687

RESUMEN

Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Animales , California , Clordano/análisis , Cloropirifos/análisis , Endosulfano/análisis , Hexaclorobenceno/análisis , Hidrocarburos Clorados/análisis , Lagos/química , Líquenes/química , Plaguicidas/análisis , Ácidos Ftálicos/análisis , Bifenilos Policlorados/análisis , Lluvia/química , Nieve/química , Contaminantes Químicos del Agua/análisis , Zooplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...