Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Access Microbiol ; 6(4)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737806

RESUMEN

Streptomyces sp. DSM 41014, DSM 41527, and DSM 41981 are three strains from the DSMZ strain collection. Here, we present the draft genome sequences of DSM 41014, DSM 41527, and DSM 41981 with a size of 9.09 Mb, 8.45 Mb, and 9.23 Mb, respectively.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38630118

RESUMEN

The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).


Asunto(s)
Actinobacteria , Actinomycetales , Fosfatidiletanolaminas , República Checa , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias , Carbón Mineral
3.
Front Bioeng Biotechnol ; 12: 1255151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361790

RESUMEN

Strain collections are a treasure chest of numerous valuable and taxonomically validated bioresources. The Leibniz Institute DSMZ is one of the largest and most diverse microbial strain collections worldwide, with a long tradition of actinomycetes research. Actinomycetes, especially the genus Streptomyces, are renowned as prolific producers of antibiotics and many other bioactive natural products. In light of this, five Streptomyces strains, DSM 40971T, DSM 40484T, DSM 40713T, DSM 40976T, and DSM 40907T, which had been deposited a long time ago without comprehensive characterization, were the subject of polyphasic taxonomic studies and genome mining for natural compounds based on in vitro and in silico analyses. Phenotypic, genetic, and phylogenomic studies distinguished the strains from their closely related neighbors. The digital DNA-DNA hybridization and average nucleotide identity values between the five strains and their close, validly named species were below the threshold of 70% and 95%-96%, respectively, determined for prokaryotic species demarcation. Therefore, the five strains merit being considered as novel Streptomyces species, for which the names Streptomyces kutzneri sp. nov., Streptomyces stackebrandtii sp. nov., Streptomyces zähneri sp. nov., Streptomyces winkii sp. nov., and Streptomyces kroppenstedtii sp. nov. are proposed. Bioinformatics analysis of the genome sequences of the five strains revealed their genetic potential for the production of secondary metabolites, which helped identify the natural compounds cinerubin B from strain DSM 40484T and the phosphonate antibiotic phosphonoalamide from strain DSM 40907T and highlighted strain DSM 40976T as a candidate for regulator-guided gene cluster activation due to the abundance of numerous "Streptomyces antibiotic regulatory protein" (SARP) genes.

4.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917135

RESUMEN

Strain TÜ4103T was originally sampled from Java, Indonesia and deposited in the Tübingen strain collection under the name 'Streptomyces sp.'. The strain was found to be an antibiotic producer as strain TÜ4103T showed bioactivity against Gram-positive bacteria, such as Bacillus subtilis and Kocuria rhizophila in bioassays. Strain TÜ4103T showed 16S rRNA gene sequence similarity of 99.65 % to Kitasatospora cheerisanensis DSM 101999T and 98.82 % to Kitasatospora niigatensis DSM 44781T and Kitasatospora cineracea DSM 44780T. Genome-based phylogenetic analysis revealed that strain TÜ4103T is closely related to K. cineracea DSM 44780T and K. niigatensis DSM 44781T. The digital DNA-DNA hybridization values between the genome sequences of strain TÜ4103T and its closest phylogenomic relatives, strains DSM 44780T and DSM 44781T, were 43.0 and 42.9 %, respectively. Average nucleotide identity (ANI) values support this claim, with the highest ANI score of 91.14 % between TÜ4103T and K. niigatensis being closely followed by an ANI value of 91.10 % between K. cineracea and TÜ4103T. The genome of TÜ4103T has a size of 7.91 Mb with a G+C content of 74.05 mol%. Whole-cell hydrolysates of strain TÜ4103T are rich in meso-diaminopimelic acid, and rhamnose, galactose and mannose are characteristic as whole-cell sugars. The phospholipid profile contains phosphatidylethanolamine, diphosphatidylglycerol and glycophospholipid. The predominant menaquinones (>93.5 %) are MK-9(H8) and MK-9(H6). Based on the phenotypic, genotypic and genomic characteristics, strain TÜ4103T (=DSM 114396T=CECT 30712T) merits recognition as the type strain of a novel species of the genus Kitasatospora, for which the name Kitasatospora fiedleri sp. nov. is proposed.


Asunto(s)
Antibacterianos , Ácidos Grasos , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Nucleótidos
5.
RSC Chem Biol ; 4(12): 1050-1063, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033732

RESUMEN

Streptogramins are the last line of defense antimicrobials with pristinamycin as a representative substance used as therapeutics against highly resistant pathogenic bacteria. However, the emergence of (multi)drug-resistant pathogens renders these valuable antibiotics useless; making it necessary to derivatize compounds for new compound characteristics, which is often difficult by chemical de novo synthesis due to the complex nature of the molecules. An alternative to substance derivatization is mutasynthesis. Herein, we report about a mutasynthesis approach, targeting the phenylglycine (Phg) residue for substance derivatization, a pivotal component of streptogramin antibiotics. Mutasynthesis with halogenated Phg(-like) derivatives altogether led to the production of two new derivatized natural compounds, as there are 6-chloropristinamycin I and 6-fluoropristinamycin I based on LC-MS/MS analysis. 6-Chloropristinamycin I and 6-fluoropristinamycin I were isolated by preparative HPLC, structurally confirmed using NMR spectroscopy and tested for antimicrobial bioactivity. In a whole-cell biotransformation approach using an engineered E. coli BL21(DE3) pET28-hmo/pACYC-bcd-gdh strain, Phg derivatives were generated fermentatively. Supplementation with the E. coli biotransformation fermentation broth containing 4-fluorophenylglycine to the pristinamycin mutasynthesis strain resulted in the production of 6-fluoropristinamycin I, demonstrating an advanced level of mutasynthesis.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37540199

RESUMEN

Strains USC-21046T and USC-21048T were isolated from foaming coastal marine waters on the Sunshine Coast, Queensland, Australia. Both strains displayed growth and morphological characteristics typical for members belonging to the genus Nocardia. The major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine, and the major fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 and C18 : 0 10-methyl. The mycolic acids of strains USC-21046T and USC-21048T consisted of chain lengths between 50-64 and 56-68, respectively. Moreover, both of those strains contained meso-diaminopimelic acid and ribose, arabinose, glucose and galactose as whole cell sugars. Based on the phylogenomic results, both strains belonged to the genus Nocardia with strain USC-21046T showing an 80.4 % genome similarity to N. vinacea NBRC 16497T and N. pseudovaccinii NBRC 100343T, whereas USC-21048T strain showed an 83.6 % genome similarity to N. aobensis NBRC 100429T. Both strains were delineated from their closely related relatives based on physiological (e.g. growth on sole carbon source) and chemotaxonomic (e.g. cellular fatty composition) differences. The digital DNA-DNA hybridization (dDDH) values between USC-21046T and USC-21048T and their closely related relatives were below the dDDH threshold value of ≤70 % used for the taxonomic classification of novel species status. The genome length of strains USC-21046T and USC-21048T were 6 878 863 and 7 066 978 bp, with G+C contents of 65.2 and 67.8 mol%, respectively. For the novel isolates, we propose the names Nocardia australiensis sp. nov. with the type strain USC-21046T (=DSM 111727T=NCCB 100867T) and Nocardia spumae sp. nov. with the type strain USC-21048T (=DSM 111726T=NCCB 100868T).


Asunto(s)
Ácidos Grasos , Nocardia , Ácidos Grasos/química , Fosfolípidos , Queensland , Filogenia , Composición de Base , ARN Ribosómico 16S/genética , Microbiología del Suelo , Vitamina K 2 , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Australia
7.
NAR Genom Bioinform ; 4(3): lqac055, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35855324

RESUMEN

Today, one of the biggest challenges in antibiotic research is a targeted prioritization of natural compound producer strains and an efficient dereplication process to avoid undesired rediscovery of already known substances. Thereby, genome sequence-driven mining strategies are often superior to wet-lab experiments because they are generally faster and less resource-intensive. In the current study, we report on the development of a novel in silico screening approach to evaluate the genetic potential of bacterial strains to produce protein synthesis inhibitors (PSI), which was termed the protein synthesis inhibitor ('psi') target gene footprinting approach = Ψ-footprinting. The strategy is based on the occurrence of protein synthesis associated self-resistance genes in genome sequences of natural compound producers. The screening approach was applied to 406 genome sequences of actinomycetes strains from the DSMZ strain collection, resulting in the prioritization of 15 potential PSI producer strains. For twelve of them, extract samples showed protein synthesis inhibitory properties in in vitro transcription/translation assays. For four strains, namely Saccharopolyspora flava DSM 44771, Micromonospora aurantiaca DSM 43813, Nocardioides albertanoniae DSM 25218, and Geodermatophilus nigrescens DSM 45408, the protein synthesis inhibitory substance amicoumacin was identified by HPLC-MS analysis, which proved the functionality of the in silico screening approach.

8.
Microb Genom ; 8(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775972

RESUMEN

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Asunto(s)
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
9.
J Nat Prod ; 85(3): 530-539, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35263115

RESUMEN

A chemical reinvestigation of the Indonesian strain Streptomyces sp. SHP 22-7 led to the isolation of three new pyrimidine nucleosides, along with six known analogues and zincphyrin. The structures of the new compounds (6, 7, 10) were elucidated by employing spectroscopic techniques (NMR, MS, CD, and IR) as well as enantioselective analyses of methyl branched side chain configurations. Application of the precursor-directed feeding approach led to the production and partial isolation of nine further pyrimidine analogues. The new compounds 6, 7, and 11 and three of the known compounds (2-4) were found to possess antimycobacterial and cytotoxic properties.


Asunto(s)
Nucleósidos de Pirimidina , Streptomyces , Vías Biosintéticas , Disacáridos , Estructura Molecular , Nucleósidos , Nucleósidos de Pirimidina/química , Streptomyces/química
10.
Microbiol Resour Announc ; 10(50): e0091821, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34913719

RESUMEN

Amycolatopsis sp. strain DSM 110486 and Pseudonocardia sp. strain DSM 110487 are two novel actinomycete species that were isolated from Hengam Island beach sand from the Persian Gulf. Here, we present the complete genome sequences of DSM 110486 and DSM 110487, with sizes of 10.98 Mbp and 10.33 Mbp, respectively.

11.
Antonie Van Leeuwenhoek ; 114(10): 1483-1496, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34355285

RESUMEN

Strain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.


Asunto(s)
Arena , Actinobacteria , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética
12.
Mar Drugs ; 19(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071728

RESUMEN

Indonesia is one of the most biodiverse countries in the world and a promising resource for novel natural compound producers. Actinomycetes produce about two thirds of all clinically used antibiotics. Thus, exploiting Indonesia's microbial diversity for actinomycetes may lead to the discovery of novel antibiotics. A total of 422 actinomycete strains were isolated from three different unique areas in Indonesia and tested for their antimicrobial activity. Nine potent bioactive strains were prioritized for further drug screening approaches. The nine strains were cultivated in different solid and liquid media, and a combination of genome mining analysis and mass spectrometry (MS)-based molecular networking was employed to identify potential novel compounds. By correlating secondary metabolite gene cluster data with MS-based molecular networking results, we identified several gene cluster-encoded biosynthetic products from the nine strains, including naphthyridinomycin, amicetin, echinomycin, tirandamycin, antimycin, and desferrioxamine B. Moreover, 16 putative ion clusters and numerous gene clusters were detected that could not be associated with any known compound, indicating that the strains can produce novel secondary metabolites. Our results demonstrate that sampling of actinomycetes from unique and biodiversity-rich habitats, such as Indonesia, along with a combination of gene cluster networking and molecular networking approaches, accelerates natural product identification.


Asunto(s)
Antibacterianos , Productos Biológicos , Bacterias Grampositivas , Biodiversidad , Descubrimiento de Drogas , Genoma Bacteriano , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/genética , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/metabolismo , Indonesia , Familia de Multigenes , Metabolismo Secundario
13.
Cell Chem Biol ; 28(8): 1242-1252.e4, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33761329

RESUMEN

A big challenge in natural product research of today is rapid dereplication of already known substances, to free capacities for the exploration of new agents. Prompt information on bioactivities and mode of action (MOA) speeds up the lead discovery process and is required for rational compound optimization. Here, we present a bioreporter approach as a versatile strategy for combined bioactivity- and MOA-informed primary screening for antimicrobials. The approach is suitable for directly probing producer strains grown on agar, without need for initial compound enrichment or purification, and works along the entire purification pipeline with culture supernatants, extracts, fractions, and pure substances. The technology allows for MOA-informed purification to selectively prioritize activities of interest. In combination with high-resolution mass spectrometry, the biosensor panel is an efficient and sensitive tool for compound deconvolution. Concomitant information on the affected metabolic pathway enables the selection of appropriate follow-up assays to elucidate the molecular target.


Asunto(s)
Antibacterianos/biosíntesis , Productos Biológicos/metabolismo , Técnicas Biosensibles , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Productos Biológicos/aislamiento & purificación , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana
14.
Artículo en Inglés | MEDLINE | ID: mdl-33427607

RESUMEN

Isolate 4NS15T was isolated from a neglected arid habitat in Kerman, Iran. The strain showed 16S rRNA gene sequence similarity values of 98.9 % to the type strains of Kibdelosporangium aridum subsp. aridum, Kibdelosporangium phytohabitans and Kibdelosporangium philippinense and 98.6 % to the type strain K. aridum subsp. largum, respectively. Genome-based phylogenetic analysis revealed that isolate 4NS15T is closely related to Kibdelosporangium aridum subsp. aridum DSM 43828T. The digital DNA-DNA hybridization value between the genome sequences of 4NS15T and strain DSM 43828T is 29.8 %. Strain 4NS15T produces long chains of spores without a sporangium-like structure which can be distinguished from other Kibdelosporangium species. Isolate 4NS15T has a genome size of 10.35 Mbp with a G+C content of 68.1 mol%. Whole-cell hydrolysates of isolate 4NS15T are rich in meso-diaminopimelic acid and cell-wall sugars such as arabinose, galactose, glucose and ribose. Major fatty acids (>10 %) are C16 : 0, iso-C16 : 0 and iso-C15 : 0. The phospholipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine, aminolipid and glycoaminolipid. The predominant menaquinone is MK-9(H4). Based on its phenotypic and genotypic characteristics, isolate 4NS15T (NCCB 100701=CIP 111705=DSM 110728) merits recognition as representing a novel species of the genus Kibdelosporangium, for which the name Kibdelosporangium persicum sp. nov. is proposed.


Asunto(s)
Actinomyces/clasificación , Clima Desértico , Filogenia , Microbiología del Suelo , Actinomyces/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Irán , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Front Microbiol ; 11: 580990, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101255

RESUMEN

Pristinamycin biosynthesis in Streptomyces pristinaespiralis is governed by a complex hierarchical signaling cascade involving seven different transcriptional regulators (SpbR, PapR1, PapR2, PapR3, PapR4, PapR5, and PapR6). The signaling cascade is triggered by γ-butyrolactone (GBL)-like effector molecules, whereby the chemical structure of the effector, as well as its biosynthetic origin is unknown so far. Three of the pristinamycin transcriptional regulators (SpbR, PapR3, and PapR5) belong to the type of γ-butyrolactone receptor (GBLR). GBLRs are known to either act as "real" GBLRs, which bind GBLs as ligands or as "pseudo" GBLRs binding antibiotics or intermediates thereof as effector molecules. In this study, we performed electromobility shift assays (EMSAs) with SpbR, PapR3, and PapR5, respectively, in the presence of potential ligand samples. Thereby we could show that all three GBLRs bind synthetic 1,4-butyrolactone but not pristinamycin as ligand, suggesting that SpbR, PapR3, and PapR5 act as "real" GBLRs in S. pristinaespiralis. Furthermore, we identified a cytochrome P450 monooxygenase encoding gene snbU as potential biosynthesis gene for the GBLR-interacting ligand. Inactivation of snbU resulted in an increased pristinamycin production, which indicated that SnbU has a regulatory influence on pristinamycin production. EMSAs with culture extract samples from the snbU mutant did not influence the target binding ability of SpbR, PapR3, and PapR5 anymore, in contrast to culture supernatant samples from the S. pristinaespiralis wild-type or the pristinamycin deficient mutant papR2::apra, which demonstrates that SnbU is involved in the synthesis of the GBLR-interacting ligand.

17.
Microbiol Resour Announc ; 9(21)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439682

RESUMEN

Streptomyces sp. TÜ 2975 and TÜ 3180 are two strains from the Tübingen Actinomycetes strain collection. Here, we present the draft genome sequences of TÜ 2975 and TÜ 3180, with sizes of 7.62 Mb and 8.63 Mb, respectively.

18.
Front Microbiol ; 11: 225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32132989

RESUMEN

Streptomyces antibiotic regulatory protein (SARP) family regulators are well-known activators of antibiotic biosynthesis in streptomycetes. The respective genes occur in various types of antibiotic gene clusters encoding, e.g., for polyketides, ribosomally and non-ribosomally synthesized peptides, or ß-lactam antibiotics. We found that overexpression of the SARP-type regulator gene papR2 from Streptomyces pristinaespiralis in Streptomyces lividans leads to the activation of the silent undecylprodigiosin (Red) gene cluster. The activation happens upon the inducing function of PapR2, which takes over the regulatory role of RedD, the latter of which is the intrinsic SARP regulator of Red biosynthesis in S. lividans. Due to the broad abundance of SARP genes in different antibiotic gene clusters of various actinomycetes and the uniform activating principle of the encoded regulators, we suggest that this type of regulator is especially well suited to be used as an initiator of antibiotic biosynthesis in actinomycetes. Here, we report on a SARP-guided strategy to activate antibiotic gene clusters. As a proof of principle, we present the PapR2-driven activation of the amicetin/plicacetin gene cluster in the novel Indonesian strain isolate Streptomyces sp. SHP22-7.

19.
Appl Microbiol Biotechnol ; 104(8): 3433-3444, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32078019

RESUMEN

L-phenylglycine (L-Phg) is a rare non-proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I and virginiamycin S or the bicyclic peptide antibiotic dityromycin. Industrially, more interesting than L-Phg is the enantiomeric D-Phg as it plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic ß-lactam antibiotics. Based on the natural L-Phg operon from Streptomyces pristinaespiralis and the stereo-inverting aminotransferase gene hpgAT from Pseudomonas putida, an artificial D-Phg operon was constructed. The natural L-Phg operon, as well as the artificial D-Phg operon, was heterologously expressed in different actinomycetal host strains, which led to the successful production of Phg. By rational genetic engineering of the optimal producer strains S. pristinaespiralis and Streptomyces lividans, Phg production could be improved significantly. Here, we report on the development of a synthetic biology-derived D-Phg pathway and the optimization of fermentative Phg production in actinomycetes by genetic engineering approaches. Our data illustrate a promising alternative for the production of Phgs.


Asunto(s)
Fermentación , Ingeniería Genética/métodos , Glicina/análogos & derivados , Operón , Streptomyces lividans/genética , Streptomyces/genética , Antibacterianos/biosíntesis , Genes Bacterianos , Glicina/biosíntesis , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Estereoisomerismo , Biología Sintética/métodos
20.
Antibiotics (Basel) ; 10(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383910

RESUMEN

Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA