Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36122347

RESUMEN

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Asunto(s)
Peroxisomas , Receptores Citoplasmáticos y Nucleares , Humanos , Fosforilación , Peroxisomas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas
2.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013259

RESUMEN

The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function. In order to point out the conserved mechanism, we discuss our findings in the context of the working models of peroxisomal biogenesis and pexophagy in yeasts and mammals.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de la Membrana/genética , Señales de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Macroautofagia , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 9(1): 10557, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332264

RESUMEN

The vacuole is the hydrolytic compartment of yeast cells and has a similar function as the lysosome of higher eukaryotes in detoxification and recycling of macromolecules. We analysed the contribution of single vacuolar enzymes to pexophagy and identified the phospholipase Atg15, the V-ATPase factor Vma2 and the serine-protease Prb1 along with the already known aspartyl-protease Pep4 (Proteinase A) to be required for this pathway. We also analysed the trafficking receptor Vps10, which is required for an efficient vacuolar targeting of the precursor form of Pep4. Here we demonstrate a novel context-dependent role of Vps10 in autophagy. We show that reduced maturation of Pep4 in a VPS10-deletion strain affects the proteolytic activity of the vacuole depending on the type and amount of substrate. The VPS10-deletion has no effect on the degradation of the cytosolic protein Pgk1 via bulk autophagy or on the degradation of ribosomes via ribophagy. In contrast, the degradation of an excess of peroxisomes via pexophagy as well as mitochondria via mitophagy was significantly hampered in a VPS10-deletion strain and correlated with a decreased maturation level of Pep4. The results show that Vps10-mediated targeting of Pep4 limits the proteolytic capacity of the vacuole in a substrate-dependent manner.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ácido Aspártico Endopeptidasas/deficiencia , Ácido Aspártico Endopeptidasas/genética , Autofagia , Eliminación de Gen , Genes Fúngicos , Macroautofagia , Modelos Biológicos , Peroxisomas/metabolismo , Fosfoglicerato Quinasa/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética
4.
Cells ; 8(7)2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262095

RESUMEN

The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8 strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.


Asunto(s)
Autofagia , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Lipoilación , Peroxisomas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Proteínas de Transporte Vesicular/genética
5.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 199-213, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30408545

RESUMEN

Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed. In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.


Asunto(s)
Señales de Direccionamiento al Peroxisoma/fisiología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Peroxinas , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/fisiología , Peroxisomas/fisiología , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteolisis , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia/genética , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación/fisiología
6.
Int J Mol Sci ; 18(12)2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29186924

RESUMEN

Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue "Ubiquitin System".


Asunto(s)
Beclina-1/metabolismo , Ubiquitinación , Animales , Beclina-1/genética , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
7.
Biochim Biophys Acta Proteins Proteom ; 1865(6): 703-714, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28377147

RESUMEN

BACKGROUND: Human hippocampal area Cornu Ammonis (CA) 1 is one of the first fields in the human telencephalon showing Alzheimer disease (AD)-specific neuropathological changes. In contrast, CA2 and CA3 are far later affected pointing to functional differences, which may be accompanied by differences in proteome endowment and changes. METHODS: Human pyramidal cell layers of hippocampal areas CA1, CA2, and CA3 from neurologically unaffected individuals were excised using laser microdissection. The proteome of each individual sample was analyzed and differentially abundant proteins were validated by immuno-histochemistry. RESULTS: Comparison of CA1 to CA2 revealed 223, CA1 to CA3 197 proteins with differential abundance, among them we found motor proteins MYO5A and DYNC1H1. Extension of the study to human hippocampus slices from AD patients revealed extensive depletion of these proteins in CA1 area compared to unaffected controls. CONCLUSION: High abundance of motor proteins in pyramidal cell layers CA1 compared to CA2 and CA3 points the specific vulnerability of this hippocampal area to transport-associated changes based on microtubule dysfunction and destabilization in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteómica , Anciano , Anciano de 80 o más Años , Cromatografía Liquida , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem
8.
Biochim Biophys Acta ; 1863(5): 1027-37, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26775584

RESUMEN

Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies.


Asunto(s)
Autofagia , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Regulación de la Expresión Génica , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/química , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
9.
PLoS One ; 9(8): e105894, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25162638

RESUMEN

Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxinas , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Fosforilación , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación
10.
Mol Cell Proteomics ; 13(2): 475-88, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284412

RESUMEN

FE65 is a cytosolic adapter protein and an important binding partner of amyloid precursor protein. Dependent on Thr668 phosphorylation in amyloid precursor protein, which influences amyloidogenic amyloid precursor protein processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease, and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and downstream signaling pathways, the identification of the FE65 interactome is of central interest in Alzheimer disease research. In this study, we identified 121 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65 binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice relative to wild-type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be up-regulated in double knockout neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of intracellular calcium homeostasis. Whereas transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.


Asunto(s)
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas , Animales , Encéfalo/patología , Células Cultivadas , Embrión de Mamíferos , Células HEK293 , Humanos , Inmunoprecipitación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/aislamiento & purificación , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Unión Proteica , Mapas de Interacción de Proteínas/genética , Sinapsis/genética , Sinapsis/metabolismo
11.
J Cell Sci ; 126(Pt 11): 2480-92, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23572515

RESUMEN

The intracellular domain of the amyloid precursor protein (AICD) is generated following cleavage of the precursor by the γ-secretase complex and is involved in membrane to nucleus signaling, for which the binding of AICD to the adapter protein FE65 is essential. Here we show that FE65 knockdown causes a downregulation of the protein Bloom syndrome protein (BLM) and the minichromosome maintenance (MCM) protein family and that elevated nuclear levels of FE65 result in stabilization of the BLM protein in nuclear mobile spheres. These spheres are able to grow and fuse, and potentially correspond to the nuclear domain 10. BLM plays a role in DNA replication and repair mechanisms and FE65 was also shown to play a role in DNA damage response in the cell. A set of proliferation assays in our work revealed that FE65 knockdown in HEK293T cells reduced cell replication. On the basis of these results, we hypothesize that nuclear FE65 levels (nuclear FE65/BLM containing spheres) may regulate cell cycle re-entry in neurons as a result of increased interaction of FE65 with BLM and/or an increase in MCM protein levels. Thus, FE65 interactions with BLM and MCM proteins may contribute to the neuronal cell cycle re-entry observed in brains affected by Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Núcleo Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Proteínas Nucleares/genética , RecQ Helicasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...