Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Ultrasound Med Biol ; 49(1): 388-397, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36241587

RESUMEN

Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.


Asunto(s)
Medios de Contraste , Microburbujas , Reproducibilidad de los Resultados , Ultrasonografía , Volatilización
2.
Artículo en Inglés | MEDLINE | ID: mdl-33502975

RESUMEN

Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides images of the vessel wall and atherosclerotic plaques. We investigate the potential for phased-array IVUS utilizing coded excitation (CE) for improving the penetration depth and image signal-to-noise ratio (SNR). It is realized on a new experimental broadband capacitive micromachined ultrasound transducer (CMUT) array, operated in collapse mode, with 96 elements placed at the circumference of a catheter tip with a 1.2- mm diameter. We characterized the array performance for CE imaging and showed that the -6-dB device bandwidth at a 30-V dc biasing is 25 MHz with a 20-MHz center frequency, with a transmit sensitivity of 37 kPa/V at that frequency. We designed a linear frequency modulation code to improve penetration depth by compensating for high-frequency attenuation while preserving resolution by a mismatched filter reconstruction. We imaged a wire phantom and a human coronary artery plaque. By assessing the image quality of the reconstructed wire phantom image, we achieved 60- and 70- µm axial resolutions using the short pulse and coded signal, respectively, and gained 8 dB in SNR for CE. Our developed system shows 20-frames/s, pixel-based beam-formed, real-time IVUS images.


Asunto(s)
Transductores , Ultrasonografía Intervencional , Diseño de Equipo , Humanos , Fantasmas de Imagen , Ultrasonografía
3.
J Cardiovasc Transl Res ; 14(3): 416-425, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33034862

RESUMEN

High wall shear stress (WSS) and near-infrared spectroscopy (NIRS) detected lipid-rich plaque (LRP) are both known to be associated with plaque destabilization and future adverse cardiovascular events. However, knowledge of spatial co-localization of LRP and high WSS is lacking. This study investigated the co-localization of LRP based on NIRS and high WSS. Fifty-three patients presenting acute coronary syndrome underwent NIRS-intravascular-ultrasound (NIRS-IVUS) imaging of a non-culprit coronary artery. WSS was obtained using WSS profiling in 3D-reconstructions of the coronary arteries based on fusion of IVUS-segmented lumen and CT-derived 3D-centerline. Thirty-eight vessels were available for final analysis and divided into 0.5 mm/45° sectors. LRP sectors, as identified by NIRS, were more often colocalized with high WSS than sectors without LRP. Moreover, there was a dose-dependent relationship between lipid content and high WSS exposure. This study is a first step in understanding the evolution of LRPs to vulnerable plaques. Graphical Abstract.


Asunto(s)
Síndrome Coronario Agudo/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Hemodinámica , Lípidos/análisis , Placa Aterosclerótica , Espectroscopía Infrarroja Corta , Ultrasonografía Intervencional , Síndrome Coronario Agudo/metabolismo , Síndrome Coronario Agudo/fisiopatología , Anciano , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/química , Vasos Coronarios/fisiopatología , Femenino , Humanos , Hidrodinámica , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Modelación Específica para el Paciente , Valor Predictivo de las Pruebas , Estudios Prospectivos , Rotura Espontánea , Estrés Mecánico
4.
Ultrasound Med Biol ; 46(8): 2017-2029, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32402676

RESUMEN

Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 µm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.


Asunto(s)
Calcio/metabolismo , Microburbujas , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Hígado/metabolismo , Hígado/ultraestructura , Microburbujas/efectos adversos , Microscopía Confocal/métodos , Imagen Óptica/métodos , Ondas Ultrasónicas
5.
J Control Release ; 322: 426-438, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32246975

RESUMEN

Ultrasound insonification of microbubbles can locally increase vascular permeability to enhance drug delivery. To control and optimize the therapeutic potential, we need to better understand the underlying biological mechanisms of the drug delivery pathways. The aim of this in vitro study was to elucidate the microbubble-endothelial cell interaction using the Brandaris 128 ultra-high-speed camera (up to 25 Mfps) coupled to a custom-built Nikon confocal microscope, to visualize both microbubble oscillation and the cellular response. Sonoporation and opening of cell-cell contacts by single αVß3-targeted microbubbles (n = 152) was monitored up to 4 min after ultrasound insonification (2 MHz, 100-400 kPa, 10 cycles). Sonoporation occurred when microbubble excursion amplitudes exceeded 0.7 µm. Quantification of the influx of the fluorescent model drug propidium iodide upon sonoporation showed that the size of the created pore increased for larger microbubble excursion amplitudes. Microbubble-mediated opening of cell-cell contacts occurred as a cellular response upon sonoporation and did not correlate with the microbubble excursion amplitude itself. The initial integrity of the cell-cell contacts affected the susceptibly to drug delivery, since cell-cell contacts opened more often when cells were only partially attached to their neighbors (48%) than when fully attached (14%). The drug delivery outcomes were independent of nonlinear microbubble behavior, microbubble location, and cell size. In conclusion, by studying the microbubble-cell interaction at nanosecond and nanometer resolution the relationship between drug delivery pathways and their underlying mechanisms was further unraveled. These novel insights will aid the development of safe and efficient microbubble-mediated drug delivery.


Asunto(s)
Microburbujas , Sonicación , Sistemas de Liberación de Medicamentos , Células Endoteliales , Ultrasonografía
6.
IEEE Trans Med Imaging ; 39(5): 1535-1544, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31725370

RESUMEN

We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.


Asunto(s)
Vasos Coronarios , Tomografía de Coherencia Óptica , Animales , Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional , Rayos Láser , Fantasmas de Imagen , Porcinos
7.
Photoacoustics ; 16: 100150, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871891

RESUMEN

In interventional electrophysiology, catheter-based radiofrequency (RF) ablation procedures restore cardiac heart rhythm by interrupting aberrant conduction paths. Real-time feedback on lesion formation and post-treatment lesion assessment could overcome procedural challenges related to ablation of underlying structures and lesion gaps. This study aims to evaluate real-time visualization of lesion progression and continuity during intra-atrial ablation with photoacoustic (PA) imaging, using clinically deployable technology. A PA-enabled RF ablation catheter was used to ablate and illuminate porcine left atrium, both excised and intact in a passive beating heart ex-vivo, for photoacoustic signal generation. PA signals were received with an intracardiac echography catheter. Using the ratio of PA images acquired with excitation wavelengths of 790 nm and 930 nm, ablation lesions were successfully imaged through circulating saline and/or blood, and lesion gaps were identified in real-time. PA-based assessment of RF-ablation lesions was successful in a realistic preclinical model of atrial intervention.

8.
Ultrasound Med Biol ; 45(9): 2575-2582, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31262523

RESUMEN

Controlling microbubble-mediated drug delivery requires the underlying biological and physical mechanisms to be unraveled. To image both microbubble oscillation upon ultrasound insonification and the resulting cellular response, we developed an optical imaging system that can achieve the necessary nanosecond temporal and nanometer spatial resolutions. We coupled the Brandaris 128 ultra-high-speed camera (up to 25 million frames per second) to a custom-built Nikon A1R+ confocal microscope. The unique capabilities of this combined system are demonstrated with three experiments showing microbubble oscillation leading to either endothelial drug delivery, bacterial biofilm disruption, or structural changes in the microbubble coating. In conclusion, using this state-of-the-art optical imaging system, microbubble-mediated drug delivery can be studied with high temporal resolution to resolve microbubble oscillation and high spatial resolution and detector sensitivity to discern cellular response. Combining these two imaging technologies will substantially advance our knowledge on microbubble behavior and its role in drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microburbujas , Microscopía Confocal , Imagen Óptica/métodos , Fonoforesis/métodos , Diseño de Equipo , Células Endoteliales de la Vena Umbilical Humana , Humanos
9.
EuroIntervention ; 15(5): 452-456, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31113762

RESUMEN

Prospective identification of lipid-rich vulnerable plaque has remained an elusive goal. Intravascular photoacoustics, a hybrid optical and ultrasonic technology, was developed as a tool for lipid-rich plaque imaging. Here, we present the first in vivo images of lipid-rich coronary atherosclerosis acquired with this new technology in a large animal model, and relate them to independent catheter-based imaging and histology.


Asunto(s)
Enfermedad de la Arteria Coronaria , Técnicas Fotoacústicas , Placa Aterosclerótica , Animales , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Lípidos , Placa Aterosclerótica/diagnóstico por imagen , Estudios Prospectivos , Ultrasonografía Intervencional
10.
Front Neurosci ; 13: 1384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998060

RESUMEN

BACKGROUND AND PURPOSE: Oncological neurosurgery relies heavily on making continuous, intra-operative tumor-brain delineations based on image-guidance. Limitations of currently available imaging techniques call for the development of real-time image-guided resection tools, which allow for reliable functional and anatomical information in an intra-operative setting. Functional ultrasound (fUS), is a new mobile neuro-imaging tool with unprecedented spatiotemporal resolution, which allows for the detection of small changes in blood dynamics that reflect changes in metabolic activity of activated neurons through neurovascular coupling. We have applied fUS during conventional awake brain surgery to determine its clinical potential for both intra-operative functional and vascular brain mapping, with the ultimate aim of achieving maximum safe tumor resection. METHODS: During awake brain surgery, fUS was used to image tumor vasculature and task-evoked brain activation with electrocortical stimulation mapping (ESM) as a gold standard. For functional imaging, patients were presented with motor, language or visual tasks, while the probe was placed over (ESM-defined) functional brain areas. For tumor vascular imaging, tumor tissue (pre-resection) and tumor resection cavity (post-resection) were imaged by moving the hand-held probe along a continuous trajectory over the regions of interest. RESULTS: A total of 10 patients were included, with predominantly intra-parenchymal frontal and temporal lobe tumors of both low and higher histopathological grades. fUS was able to detect (ESM-defined) functional areas deep inside the brain for a range of functional tasks including language processing. Brain tissue could be imaged at a spatial and temporal resolution of 300 µm and 1.5-2.0 ms respectively, revealing real-time tumor-specific, and healthy vascular characteristics. CONCLUSION: The current study presents the potential of applying fUS during awake brain surgery. We illustrate the relevance of fUS for awake brain surgery based on its ability to capture both task-evoked functional cortical responses as well as differences in vascular characteristics between tumor and healthy tissue. As current neurosurgical practice is still pre-dominantly leaning on inherently limited pre-operative imaging techniques for tumor resection-guidance, fUS enters the scene as a promising alternative that is both anatomically and physiologically informative.

11.
Circ Cardiovasc Interv ; 11(12): e006911, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30562091

RESUMEN

BACKGROUND: Instantaneous wave-free ratio (iFR) offers a reliable non-hyperemic assessment of coronary physiology but requires dedicated proprietary software with a fully automated algorithm. We hypothesized that dPR (diastolic pressure ratio), calculated with novel universal software, has a strong correlation with iFR, similar diagnostic accuracy relative to resting distal coronary artery pressure/aortic pressure and fractional flow reserve (FFR). METHODS AND RESULTS: The dPR study is an observational, retrospective, single-center cohort study including patients who underwent iFR or FFR. Dedicated software was used to calculate the dPR from Digital Imaging and Communications in Medicine (DICOM) pressure waveforms. The flat period on the pressure difference between sample (dP) to the time difference between the same sample points (dt) signal was used to detect automatically the period, where the resistance is low and constant, and to calculate the dPR, which is an average over 5 consecutive heartbeats. The software was validated by correlating iFR results with dPR. Software validation was done by comparing 78 iFR measurements in 44 patients who underwent iFR. Mean iFR and dPR were 0.91±0.10 and 0.92±0.10, respectively, with a significant linear correlation ( R=0.997; P<0.001). Diagnostic accuracy was tested in 100 patients who underwent FFR. Mean FFR, resting distal coronary artery pressure/aortic pressure, and dPR were 0.85±0.09, 0.94±0.05, and 0.93±0.07, respectively. There was a significant linear correlation between dPR and FFR ( R=0.77; P<0.001). Both distal coronary artery pressure/aortic pressure and dPR had good diagnostic accuracy in the identification of lesions with an FFR ≤0.80 (area under the curve, 0.84; 95% CI, 0.76-0.92 and 0.86; 95% CI, 0.78-0.93, respectively). CONCLUSIONS: dPR, calculated by a novel validated software tool, showed a strong linear correlation with iFR. dPR correlated well with FFR with a good diagnostic accuracy to identify positive FFR.


Asunto(s)
Algoritmos , Aorta/fisiopatología , Presión Arterial , Cateterismo Cardíaco , Enfermedad de la Arteria Coronaria/diagnóstico , Vasos Coronarios/fisiopatología , Reserva del Flujo Fraccional Miocárdico , Anciano , Anciano de 80 o más Años , Cateterismo Cardíaco/instrumentación , Catéteres Cardíacos , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Diástole , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Validación de Programas de Computación , Factores de Tiempo , Transductores de Presión
12.
Neuroimage ; 183: 469-477, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118869

RESUMEN

Recent advances in ultrasound Doppler imaging have facilitated the technique of functional ultrasound (fUS) which enables visualization of brain-activity due to neurovascular coupling. As of yet, this technique has been applied to rodents as well as to human subjects during awake craniotomy surgery and human newborns. Here we demonstrate the first successful fUS studies on awake pigeons subjected to auditory and visual stimulation. To allow successful fUS on pigeons we improved the temporal resolution of fUS up to 20,000 frames per second with real-time visualization and continuous recording. We show that this gain in temporal resolution significantly increases the sensitivity for detecting small fluctuations in cerebral blood flow and volume which may reflect increased local neural activity. Through this increased sensitivity we were able to capture the elaborate 3D neural activity pattern evoked by a complex stimulation pattern, such as a moving light source. By pushing the limits of fUS further, we have reaffirmed the enormous potential of this technique as a new standard in functional brain imaging with the capacity to unravel unknown, stimulus related hemodynamics with excellent spatiotemporal resolution with a wide field of view.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Columbidae/fisiología , Neuroimagen Funcional/métodos , Imagenología Tridimensional/métodos , Acoplamiento Neurovascular/fisiología , Ultrasonografía Doppler/métodos , Percepción Visual/fisiología , Animales , Encéfalo/diagnóstico por imagen , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Masculino
13.
IEEE Trans Biomed Eng ; 65(10): 2210-2218, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29993464

RESUMEN

OBJECTIVE: Minimally invasive procedures, such as intravascular and intracardiac interventions, may benefit from guidance with forward-looking (FL) ultrasound. In this work, we investigate FL ultrasound imaging using a single-element transducer integrated in a steerable catheter, together with an optical shape sensing (OSS) system. METHODS: We tested the feasibility of the proposed device by imaging the surface of a tissue-mimicking (TM) phantom and an ex vivo human carotid plaque. While manually steering the catheter tip, ultrasound A-lines are acquired at 60 Hz together with the catheter shape from the OSS system, resulting in a two-dimensional sparse and irregularly sampled data set. We implemented an adaptive Normalized Convolution (NC) algorithm to interpolate the sparse data set by applying an anisotropic Gaussian kernel that is rotated according to the local direction of the catheter scanning pattern. To choose the Gaussian widths tangential ( ${\sigma _t}$) and normal ( ${\sigma _n}$) to the scanning pattern, an exhaustive search was implemented based on RMSE computation on simulated data. RESULTS: Simulations showed that the sparse data set contains only 5% of the original information. The chosen widths, ${\sigma _n} = \text{250}\;\mu {\textrm{m}}$ and ${\sigma _t} = \text{100}\;\mu{\textrm{m}}$, are used to successfully reconstruct the surface of the phantom with a contrast ratio of 0.9. The same kernel is applied successfully to the carotid plaque data. CONCLUSION: The proposed approach enables FL imaging with a single ultrasound element, mounted on a steerable device. SIGNIFICANCE: This principle may find application in a variety of image-guided interventions, such as chronic total occlusion (CTO) recanalization.


Asunto(s)
Catéteres , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía Intervencional/instrumentación , Ultrasonografía Intervencional/métodos , Algoritmos , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de Imagen , Transductores
14.
Sci Adv ; 3(12): e1701423, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29230434

RESUMEN

Three-dimensional ultrasound is a powerful imaging technique, but it requires thousands of sensors and complex hardware. Very recently, the discovery of compressive sensing has shown that the signal structure can be exploited to reduce the burden posed by traditional sensing requirements. In this spirit, we have designed a simple ultrasound imaging device that can perform three-dimensional imaging using just a single ultrasound sensor. Our device makes a compressed measurement of the spatial ultrasound field using a plastic aperture mask placed in front of the ultrasound sensor. The aperture mask ensures that every pixel in the image is uniquely identifiable in the compressed measurement. We demonstrate that this device can successfully image two structured objects placed in water. The need for just one sensor instead of thousands paves the way for cheaper, faster, simpler, and smaller sensing devices and possible new clinical applications.


Asunto(s)
Imagenología Tridimensional/métodos , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Algoritmos , Calibración , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/instrumentación
15.
PLoS One ; 12(7): e0180747, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28686673

RESUMEN

Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between microbubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n = 177; 2.3-10.3 µm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ~4-5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble's compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our hypothesis that hot spots are related to acoustic buckling could not be verified.


Asunto(s)
Acústica , Materiales Biocompatibles Revestidos/química , Lípidos/química , Microburbujas , Medios de Contraste/química , Modelos Teóricos , Presión , Sonicación , Vibración
16.
Biomed Opt Express ; 8(2): 943-953, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270995

RESUMEN

Lipid deposition can be assessed with combined intravascular photoacoustic/ultrasound (IVPA/US) imaging. To date, the clinical translation of IVPA/US imaging has been stalled by a low imaging speed and catheter complexity. In this paper, we demonstrate imaging of lipid targets in swine coronary arteries in vivo, at a clinically useful frame rate of 20 s-1. We confirmed image contrast for atherosclerotic plaque in human samples ex vivo. The system is on a mobile platform and provides real-time data visualization during acquisition. We achieved an IVPA signal-to-noise ratio of 20 dB. These data show that clinical translation of IVPA is possible in principle.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26470036

RESUMEN

Measuring the magnitude and direction of tissue displacement provides the basis for the assessment of tissue motion or tissue stiffness. Using conventional displacement tracking by ultrasound delay estimation, only one direction of tissue displacement can be estimated reliably. In this paper, we describe a new technique for estimating the complete two-dimensional displacement vector using high-frame-rate ultrasound imaging. We compute the displacement vector using phase delays that can be measured between pairs of elements within an array. By combining multiple element-pair solutions, we find a new robust estimate for the displacement vector. In this paper, we provide experimental proof that this method permits measurement of the displacement vector for isolated scatterers and diffuse scatterers with high (submicrometer) precision, without the need for beam steering. We also show that we can measure the axial and lateral distension of a carotid artery in a transverse view.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Algoritmos , Fantasmas de Imagen , Reproducibilidad de los Resultados
18.
Artículo en Inglés | MEDLINE | ID: mdl-25768814

RESUMEN

This work describes the fracturing mechanism of air-filled microbubbles (MBs) encapsulated by a cross-linked poly(vinyl alcohol) (PVA) shell. The radial oscillation and fracturing events following the ultrasound exposure were visualized with an ultrahigh-speed camera, and backscattered timedomain signals were acquired with the acoustic setup specific for harmonic detection. No evidence of gas emerging from defects in the shell with the arrival of the first insonation burst was found. In optical recordings, more than one shell defect was noted, and the gas core was drained without any sign of air extrusion when several consecutive bursts of 1 MPa amplitude were applied. In acoustic tests, the backscattered peak-to-peak voltage gradually reached its maximum and exponentially decreased when the PVA-based MB suspension was exposed to approximately 20 consecutive bursts arriving at pulse repetition frequencies of 100 and 500 Hz. Taking into account that the PVA shell is porous and possibly contains large air pockets between the cross-linked PVA chains, the aforementioned acoustic behavior might be attributed to pumping gas from these pockets in combination with gas release from the core through shell defects. We refer to this fracturing mechanism as pumping-out behavior, and this behavior could have potential use for the local delivery of therapeutic gases, such as nitric oxide.


Asunto(s)
Medios de Contraste/química , Microburbujas , Alcohol Polivinílico/química , Acústica , Ensayo de Materiales , Óptica y Fotónica
19.
Ultrasound Med Biol ; 40(10): 2392-403, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25088760

RESUMEN

The carotid artery (CA) is central to cardiovascular research, because of the clinical relevance of CA plaques as culprits of stroke and the accessibility of the CA for cardiovascular screening. The viscoelastic state of this artery, essential for clinical evaluation, can be assessed by observing arterial deformation in response to the pressure changes throughout the cardiac cycle. Ultrasound imaging has proven to be an excellent tool to monitor these dynamic deformation processes. We describe how a new technique called high-frame-rate ultrasound imaging captures the tissue deformation dynamics throughout the cardiac cycle in unprecedented detail. Local tissue motion exhibits distinct features of sub-micrometer displacements on a sub-millisecond time scale. We present a high-definition motion analysis technique based on plane wave ultrasound imaging able to capture these features. We validated this method by screening a group of healthy volunteers and compared the results with those for two patients known to have atherosclerosis to illustrate the potential utility of this technique.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Adulto , Aterosclerosis/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Arterias Carótidas/fisiología , Arterias Carótidas/fisiopatología , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Ultrasonografía , Rigidez Vascular/fisiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-23221217

RESUMEN

Beamforming of plane-wave ultrasound echo signals in the Fourier domain provides fast and accurate image reconstruction. Conventional implementations perform a k-space interpolation from the uniform sampled grid to a nonuniform acoustic dispersion grid. In this paper, we demonstrate that this step can be replaced by a nonuniform Fourier transform. We study the performance of the nonuniform fast Fourier transform (NUFFT) in terms of signal-to-noise ratio and computational cost, and show that the NUFFT offers an advantage in the trade-off between speed and accuracy, compared with other frequency-domain beamforming strategies.


Asunto(s)
Análisis de Fourier , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Ultrasonografía/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...