Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9614, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671304

RESUMEN

The abnormal heart conduction, known as arrhythmia, can contribute to cardiac diseases that carry the risk of fatal consequences. Healthcare professionals typically use electrocardiogram (ECG) signals and certain preliminary tests to identify abnormal patterns in a patient's cardiac activity. To assess the overall cardiac health condition, cardiac specialists monitor these activities separately. This procedure may be arduous and time-intensive, potentially impacting the patient's well-being. This study automates and introduces a novel solution for predicting the cardiac health conditions, specifically identifying cardiac morbidity and arrhythmia in patients by using invasive and non-invasive measurements. The experimental analyses conducted in medical studies entail extremely sensitive data and any partial or biased diagnoses in this field are deemed unacceptable. Therefore, this research aims to introduce a new concept of determining the uncertainty level of machine learning algorithms using information entropy. To assess the effectiveness of machine learning algorithms information entropy can be considered as a unique performance evaluator of the machine learning algorithm which is not selected previously any studies within the realm of bio-computational research. This experiment was conducted on arrhythmia and heart disease datasets collected from Massachusetts Institute of Technology-Berth Israel Hospital-arrhythmia (DB-1) and Cleveland Heart Disease (DB-2), respectively. Our framework consists of four significant steps: 1) Data acquisition, 2) Feature preprocessing approach, 3) Implementation of learning algorithms, and 4) Information Entropy. The results demonstrate the average performance in terms of accuracy achieved by the classification algorithms: Neural Network (NN) achieved 99.74%, K-Nearest Neighbor (KNN) 98.98%, Support Vector Machine (SVM) 99.37%, Random Forest (RF) 99.76 % and Naïve Bayes (NB) 98.66% respectively. We believe that this study paves the way for further research, offering a framework for identifying cardiac health conditions through machine learning techniques.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Aprendizaje Automático , Humanos , Electrocardiografía/métodos , Arritmias Cardíacas/diagnóstico , Algoritmos , Monitoreo Fisiológico/métodos , Cardiopatías/diagnóstico
2.
Life (Basel) ; 12(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35743873

RESUMEN

An electrocardiogram (ECG) consists of five types of different waveforms or characteristics (P, QRS, and T) that represent electrical activity within the heart. Identification of time intervals and morphological appearance of the waves are the major measuring instruments to detect cardiac abnormality from ECG signals. The focus of this study is to classify five different types of heartbeats, including premature ventricular contraction (PVC), left bundle branch block (LBBB), right bundle branch block (RBBB), PACE, and atrial premature contraction (APC), to identify the exact condition of the heart. Prior to the classification, extensive experiments on feature extraction were performed to identify the specific events from ECG signals, such as P, QRS complex, and T waves. This study proposed the fusion technique, dual event-related moving average (DERMA) with the fractional Fourier-transform algorithm (FrlFT) to identify the abnormal and normal morphological events of the ECG signals. The purpose of the DERMA fusion technique is to analyze certain areas of interest in ECG peaks to identify the desired location, whereas FrlFT analyzes the ECG waveform using a time-frequency plane. Furthermore, detected highest and lowest components of the ECG signal such as peaks, the time interval between the peaks, and other necessary parameters were utilized to develop an automatic model. In the last stage of the experiment, two supervised learning models, namely support vector machine and K-nearest neighbor, were trained to classify the cardiac condition from ECG signals. Moreover, two types of datasets were used in this experiment, specifically MIT-BIH Arrhythmia with 48 subjects and the newly disclosed Shaoxing and Ningbo People's Hospital (SPNH) database, which contains over 10,000 patients. The performance of the experimental setup produced overwhelming results, which show around 99.99% accuracy, 99.96% sensitivity, and 99.9% specificity.

3.
Sensors (Basel) ; 20(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941106

RESUMEN

Recently, there has been a cloud-based Internet of Medical Things (IoMT) solution offering different healthcare services to wearable sensor devices for patients. These services are global, and can be invoked anywhere at any place. Especially, electrocardiogram (ECG) sensors, such as Lead I and Lead II, demands continuous cloud services for real-time execution. However, these services are paid and need a lower cost-efficient process for the users. In this paper, this study considered critical heartbeat cost-efficient task scheduling problems for healthcare applications in the fog cloud system. The objective was to offer omnipresent cloud services to the generated data with minimum cost. This study proposed a novel health care based fog cloud system (HCBFS) to collect, analyze, and determine the process of critical tasks of the heartbeat medical application for the purpose of minimizing the total cost. This study devised a health care awareness cost-efficient task scheduling (HCCETS) algorithm framework, which not only schedule all tasks with minimum cost, but also executes them on their deadlines. Performance evaluation shows that the proposed task scheduling algorithm framework outperformed the existing algorithm methods in terms of cost.


Asunto(s)
Nube Computacional , Análisis Costo-Beneficio , Frecuencia Cardíaca/fisiología , Internet de las Cosas/economía , Análisis y Desempeño de Tareas , Algoritmos , Calibración , Bases de Datos como Asunto , Atención a la Salud , Humanos
4.
Cardiol Res Pract ; 2018: 2016282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507812

RESUMEN

Coronary artery disease (CAD) is the most dangerous heart disease which may lead to sudden cardiac death. However, CAD diagnoses are quite expensive and time-consuming procedures which a patient need to go through. The aim of our paper is to present a unique review of state-of-the-art methods up to 2017 for automatic CAD classification. The protocol of review methods is identifying best methods and classifier for CAD identification. The study proposes two workflows based on two parameter sets for instances A and B. It is necessary to follow the proper procedure, for future evaluation process of automatic diagnosis of CAD. The initial two stages of the parameter set A workflow are preprocessing and feature extraction. Subsequently, stages (feature selection and classification) are same for both workflows. In literature, the SVM classifier represents a promising approach for CAD classification. Moreover, the limitation leads to extract proper features from noninvasive signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA