Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 190(11): 434, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821740

RESUMEN

An ultrasensitive capacitance-based biosensor has been developed capable of detecting the kanamycin (KAN) antibiotic at sub-femtomolar levels. The biosensor was constructed using a potential-pulse-assisted method, allowing for the layer-by-layer deposition of a melanin-like polymeric film (MLPF) on an electrode surface modified with gold nanoparticles (AuNPs). The MLPF was formed through the electrochemical polymerization of dopamine and the specific kanamycin aptamer. By optimizing the operating parameters, we achieved a label-free detection of kanamycin by monitoring the variation of pseudocapacitive properties of the MLPF-modified electrode using electrochemical impedance spectroscopy. The developed biosensor demonstrated a wide linear response ranging from 1 fM to 100 pM, with a remarkable limit of detection of 0.3 fM (S/N = 3) for kanamycin. Furthermore, the biosensor was successfully applied to detect kanamycin in milk samples, exhibiting good recovery. These findings highlight the promising potential of the aptasensor for determination of antibiotic residues and ensuring food safety. In conclusion, our ultrasensitive capacitance-based biosensor provides a reliable and efficient method for detecting trace amounts of kanamycin in dairy products. This technology can contribute to safeguarding consumer health and maintaining high food safety standards.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Kanamicina , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Oxidación-Reducción , Antibacterianos , Electrodos , Técnicas Biosensibles/métodos
2.
RSC Adv ; 13(31): 21336-21344, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37465569

RESUMEN

Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy. By exploiting the interaction of the AuNPs/pDA electroactive interface with the target nitrite ions, we observed distinct changes in the redox distribution, subsequently leading to modifications in the associated redox capacitance. This alteration enables the successful detection of nitrite, exhibiting a linear response within the concentration range of 10 to 500 µM, with a limit of detection of 1.98 µM (S/N = 3). Furthermore, we applied the developed sensor to analyze nitrite levels in processed meats, yielding good recoveries. These results demonstrate the potential of our approach as a promising method for routine detection of ions.

3.
Talanta ; 258: 124445, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36924636

RESUMEN

In silico evaluation of aptamer/target interactions can facilitate the development of efficient biosensor with high specificity and affinity. In this work, we present in silico, i.e. structural similarity, molecular docking and molecular dynamics selection of the aptamer with sufficient binding properties for acetamiprid (ACE), a nicotine-like pesticide, and its use to design aptamer-modified magnetic beads bearing ferrocene co-immobilized label for capacitive detection of ACE. Taking advantages of the aptamer higher stability and binding affinity, the specific properties of magnetic beads and the redox properties of ferrocene moiety, the developed aptasensor showed promising analytical performances for ACE detection, using electrochemical capacitance spectroscopy, with a linear response ranging from 1 fM to 100 pM and a limit of detection of 0.94 fM (S/N = 3). Furthermore, it was successfully applied to detect ACE in fortified tomatoes samples, proving a promising approach for routine detection of pesticide in real agricultural samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Plaguicidas , Simulación del Acoplamiento Molecular , Metalocenos/química , Aptámeros de Nucleótidos/química , Plaguicidas/análisis , Técnicas Biosensibles/métodos , Fenómenos Magnéticos , Límite de Detección , Técnicas Electroquímicas/métodos
4.
Biosensors (Basel) ; 13(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36832006

RESUMEN

Point mutations are common in the human DNA genome and are closely related to higher susceptibility to cancer diseases. Therefore, suitable methods for their sensing are of general interest. In this work, we report on a magnetic electrochemical bioassay using DNA probes tethered to streptavidin magnetic beads (strep-MBs) to detect T > G single nucleotide polymorphism (SNP) within the inteleukin-6 (IL6) gene in human genomic DNA. In the presence of the target DNA fragment and tetramethylbenzidine (TMB), the electrochemical signal related to the oxidation of TMB is observed, which is much higher than the one obtained in the absence of the target. The key parameters affecting the analytical signal, such as the concentration of the biotinylated probe, its incubation time with strep-MBs, DNA hybridization time, and TMB loading, were optimized using the electrochemical signal intensity and signal-to-blank (S/B) ratio as selection criteria. Using spiked buffer solutions, the bioassay can detect the mutated allele in a wide range of concentrations (over six decades) with a low detection limit (7.3 fM). Furthermore, the bioassay displays a high specificity with high concentrations of the major allele (one mismatched), and two mismatched and non-complementary DNA. More importantly, the bioassay can detect the variation in scarcely diluted human DNA, collected from 23 donors, and can reliably distinguish between heterozygous (TG genotype) and homozygous (GG genotype) in respect to the control subjects (TT genotype), where the differences are statistically highly significant (p-value < 0.001). Thus, the bioassay is useful for cohort studies targeting one or more mutations in human DNA.


Asunto(s)
Técnicas Biosensibles , Interleucina-6 , Humanos , Mutación Puntual , ADN , Hibridación de Ácido Nucleico/métodos , Sondas de ADN , Estreptavidina , Técnicas Biosensibles/métodos
5.
RSC Adv ; 12(21): 13003-13013, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35497015

RESUMEN

IL-6 is an important interleukin associated with inflammation and several diseases such as cancer. Evaluation of its levels in human blood sera is a critical step for an accurate diagnosis of the diseases. Our goal is to design peptides that can selectively bind in different poses with good affinities to IL-6. For this purpose, we started from the crystal structures of different IL-6/protein complexes available in the Protein Data Bank (PDB) to select short peptides in the interaction zones, in which we intentionally introduced point mutations to increase their stability and affinity. To examine their usefulness as capture and reporting probes for the IL-6 biosensing, the five peptides and their interaction with IL-6 were studied in saline aqueous solution. Molecular docking, MD, and MM-PBSA were used to investigate the affinity and stability of these complexes. The conformational changes, the distance between the mass centers, the gyration radii, and the numbers of hydrogen bonds were analyzed to select the most suitable candidates. Three peptides, namely CTE17, CAY15 and CSE25, have the highest affinities presenting significant numbers of residues that have contact frequencies greater than 50% of simulation run time and are the most promising candidates. CTE17 and CSE25 showed they can form a stable sandwich with the target protein. For sake of comparison, we examined the previously known peptides (FND20, INL19 and CEK17) having affinity to IL-6 and the affinity of the lead i.e. CSE25 to two other interleukin family members (IL-4 and to IL-10).

6.
Antibiotics (Basel) ; 9(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287135

RESUMEN

In this work, we describe the use of a new truncated aptamer for the determination of ofloxacin (OFL), being a principal quinolone commonly used in both human and animal healthcare. Since the affinity of a 72-mer ssDNA sequence has been previously described without further investigations, this paper demonstrates the first computational prediction of the binding motif between this aptamer and OFL through in silico molecular docking studies. Besides, we suggest the application of the characterized recognition mechanism in a simple FRET (Förster Resonance Energy Transfer) pattern for the rapid aptasensing of the quinolone of interest. Accordingly, our approach harnesses the fluorescence quenching of the fluorescein-tagged aptamer (FAM-APT) induced by its partial hybridization to a tetramethyl rhodamine-labelled complementary ssDNA (TAMRA-cDNA). In such a structure, dye labels brought into close proximity act as a FRET pair. Upon ofloxacin addition, an affinity competition occurs to form a more stable FAM-APT/OFL complex, thus unquenching the FAM-APT signal. Interestingly, the recovered fluorescence intensity was found to correlate well with the antibiotic's concentrations in the range of 0.2-200 µM in HEPES buffer, with a linear response that ranged between 0.2 and 20 µM. The rapid apta-assay achieved limits of detection and quantification of 0.12 and 0.40 µM, respectively. The truncated aptamer has also shown an improved specificity toward OFL than other quinolones, compared to the original full-length aptamer described in previous works. Finally, the practical application of the developed apta-assay was successfully confirmed to detect OFL quinolone in spiked milk samples, with satisfactory recoveries ranging between 97.4% and 111.4%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA