Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Commun ; 14(1): 8315, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097648

RESUMEN

The strategies adopted by viruses to reprogram the translation and protein quality control machinery and promote infection are poorly understood. Here, we report that the viral ubiquitin deconjugase (vDUB)-encoded in the large tegument protein of Epstein-Barr virus (EBV BPLF1)-regulates the ribosomal quality control (RQC) and integrated stress responses (ISR). The vDUB participates in protein complexes that include the RQC ubiquitin ligases ZNF598 and LTN1. Upon ribosomal stalling, the vDUB counteracts the ubiquitination of the 40 S particle and inhibits the degradation of translation-stalled polypeptides by the proteasome. Impairment of the RQC correlates with the readthrough of stall-inducing mRNAs and with activation of a GCN2-dependent ISR that redirects translation towards upstream open reading frames (uORFs)- and internal ribosome entry sites (IRES)-containing transcripts. Physiological levels of active BPLF1 promote the translation of the EBV Nuclear Antigen (EBNA)1 mRNA in productively infected cells and enhance the release of progeny virus, pointing to a pivotal role of the vDUB in the translation reprogramming that enables efficient virus production.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Ubiquitina , Humanos , Ubiquitina/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Ribosomas/metabolismo , Ubiquitinación , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Biosíntesis de Proteínas , Proteínas Portadoras/metabolismo
2.
Semin Cell Dev Biol ; 132: 185-192, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34776333

RESUMEN

The covalent attachment of ubiquitin and ubiquitin-like polypeptides to cellular and viral proteins regulates numerous processes that enable virus infection, viral genome replication, and the spread of viruses to new hosts. The importance of these protein modifications in the regulation of the life cycle of herpesviruses is underscored by the discovery that all known members of this virus family encode at least one protease that specifically recognizes and disassembles ubiquitin conjugates. The structural and functional characterization of the viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infection and increasing evidence suggests that the viral deconjugases may also play a role in malignant transformation.


Asunto(s)
Herpesviridae , Virosis , Humanos , Ubiquitina/metabolismo , Replicación Viral , Proteínas Virales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
PLoS Pathog ; 17(9): e1009954, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543352

RESUMEN

Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células HEK293 , Células HeLa , Humanos
4.
Biochem J ; 478(12): 2297-2308, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34143865

RESUMEN

Autophagy is an important component of the innate immune response that restricts infection by different types of pathogens. Viruses have developed multiple strategies to avoid autophagy to complete their replication cycle and promote spreading to new hosts. Here, we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein-Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), regulate selective autophagy by inhibiting the activity of the autophagy receptor SQSTM1/p62. We found that all the homologs bind to and deubiquitinate SQSTM1/p62 but with variable efficiency, which correlates with their capacity to prevent the colocalization of light chain 3 (LC3) with SQSTM1/p62 aggregates and promote the accumulation of a model autophagy substrate. The findings highlight important differences in the strategies by which herpesviruses interfere with selective autophagy.


Asunto(s)
Autofagia , Enzimas Desubicuitinizantes/metabolismo , Infecciones por Herpesviridae/virología , Herpesviridae/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Proteínas Virales/metabolismo , Enzimas Desubicuitinizantes/genética , Células HeLa , Herpesviridae/clasificación , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteína Sequestosoma-1/genética , Ubiquitina/metabolismo , Ubiquitinación , Proteínas Virales/genética , Replicación Viral
5.
Autophagy ; 17(11): 3461-3474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33509017

RESUMEN

Macroautophagy/autophagy plays an important role in the control of viral infections and viruses have evolved multiple strategies to interfere with autophagy to avoid destruction and promote their own replication and spread. Here we report that the deubiquitinase encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein, BPLF1, regulates selective autophagy. Mass spectrometry analysis identified several vesicular traffic and autophagy related proteins as BPLF1 interactors and potential substrates, suggesting that the viral protein targets this cellular defense during productive infection. Direct binding of BPLF1 to the autophagy receptor SQSTM1/p62 (sequestosome 1) was confirmed by co-immunoprecipitation of transfected BPLF1 and by in vitro affinity isolation of bacterially expressed proteins. Expression of the catalytically active BPLF1 was associated with decreased SQSTM1/p62 ubiquitination and failure to recruit LC3 to SQSTM1/p62-positive aggregates. Selective autophagy was inhibited as illustrated by the accumulation of large protein aggregates in BPLF1-positive cells co-transfected with an aggregate-prone HTT (huntingtin)-Q109 construct, and by a slower autophagy-dependent clearance of protein aggregates upon transfection of BPLF1 in cells expressing a tetracycline-regulated HTT-Q103. The inhibition of aggregate clearance was restored by overexpression of a SQSTM1/p62[E409A,K420R] mutant that does not require ubiquitination of Lys420 for cargo loading. These findings highlight a previously unrecognized role of the viral deubiquitinase in the regulation of selective autophagy, which may promote infection and the production of infectious virus.Abbreviations: BPLF1, BamH1 fragment left open reading frame-1; EBV, Epstein-Barr virus; GFP, green fluorescent protein; HTT, huntingtin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PB1, Phox and Bem1 domain; PE, phosphatidylethanolamine; SQSTM1/p62, sequestosome 1; UBA, ubiquitin-associated domain.


Asunto(s)
Autofagia/fisiología , Enzimas Desubicuitinizantes/fisiología , Herpesvirus Humano 4/fisiología , Proteína Sequestosoma-1/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Autofagia/genética , Enzimas Desubicuitinizantes/genética , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Macroautofagia/genética , Macroautofagia/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Proteína Sequestosoma-1/genética , Transfección , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
6.
Front Immunol ; 11: 437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226432

RESUMEN

The hijacking of cellular function through expression of proteins that interfere with the activity of cellular enzymes and regulatory complexes is a common strategy used by viruses to remodel the cell environment in favor of their own replication and spread. Here we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein-Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), target an early step of the IFN signaling cascade that involves the formation of a trimolecular complex with the ubiquitin ligase TRIM25 and the 14-3-3 molecular scaffold. Different from other homologs, the HSV-1 encoded enzyme fails to interact with 14-3-3, which correlates with failure to promote the autoubiquitination and sequestration of TRIM25 in cytoplasmic aggregates, and inability to block the activation and nuclear translocation of the IRF3 transcription factor. These findings highlight a key role for 14-3-3 molecular scaffolds in the regulation of innate immune response to herpesvirus infections and points to a possible target for the development of a new type of antivirals with applications in a broad spectrum of human diseases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Citomegalovirus/metabolismo , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Unión Proteica , Transducción de Señal , Ubiquitina/metabolismo
7.
Oncogene ; 39(3): 603-616, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511648

RESUMEN

Epstein-Barr virus (EBV) immortalizes human B-lymphocytes and is implicated in the pathogenesis of lymphoid and epithelial cell malignancies. The EBV nuclear antigen (EBNA)-1 induces the accumulation of reactive oxygen species (ROS), which enables B-cell immortalization but causes oxidative DNA damage and triggers antiproliferative DNA damage responses. By comparing pairs of EBV-negative and -positive tumor cell lines we found that, while associated with the accumulation of oxidized nucleotides, EBV carriage promotes the concomitant activation of oxo-dNTP sanitization and purging pathways, including upregulation of the nucleoside triphosphatase mut-T homolog 1 (MTH1) and the DNA glycosylases 8-oxoguanine-glycosylase-1 (OGG1) and mut-Y homolog (MUTYH). Expression of EBNA1 was reversibly associated with transcriptional activation of this cellular response. DNA damage and apoptosis were preferentially induced in EBNA1-positive cell lines by treatment with MTH1 inhibitors, suggesting that virus carriage is linked to enhanced vulnerability to oxidative stress. MTH1, OGG1, and MUTYH were upregulated upon EBV infection in primary B-cells and treatment with MTH1 inhibitors prevented B-cell immortalization. These findings highlight an important role of the cellular antioxidant response in sustaining EBV infection, and suggests that targeting this cellular defense may offer a novel approach to antiviral therapy and could reduce the burden of EBV associated cancer.


Asunto(s)
Linfocitos B/patología , Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidad , Neoplasias/patología , Linfocitos B/virología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/farmacología , Daño del ADN/efectos de los fármacos , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/metabolismo , Humanos , Neoplasias/virología , Estrés Oxidativo/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Cultivo Primario de Células , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
8.
Oncogene ; 39(9): 2028, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31649332

RESUMEN

This article was originally published under Springer Nature's License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.

9.
PLoS Pathog ; 15(11): e1008146, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710640

RESUMEN

The 14-3-3 molecular scaffolds promote type I interferon (IFN) responses by stabilizing the interaction of RIG-I with the TRIM25 ligase. Viruses have evolved unique strategies to halt this cellular response to support their replication and spread. Here, we report that the ubiquitin deconjugase (DUB) encoded in the N-terminus of the Epstein-Barr virus (EBV) large tegument protein BPLF1 harnesses 14-3-3 molecules to promote TRIM25 autoubiquitination and sequestration of the ligase into inactive protein aggregates. Catalytically inactive BPLF1 induced K48-linked autoubiquitination and degradation of TRIM25 while the ligase was mono- or di-ubiquitinated in the presence of the active viral enzyme and formed cytosolic aggregates decorated by the autophagy receptor p62/SQSTM1. Aggregate formation and the inhibition of IFN response were abolished by mutations of solvent exposed residues in helix-2 of BPLF1 that prevented binding to 14-3-3 while preserving both catalytic activity and binding to TRIM25. 14-3-3 interacted with the Coiled-Coil (CC) domain of TRIM25 in in vitro pulldown, while BPLF1 interacted with both the CC and B-box domains, suggesting that 14-3-3 positions BPLF1 at the ends of the CC dimer, close to known autoubiquitination sites. Our findings provide a molecular understanding of the mechanism by which a viral deubiquitinase inhibits the IFN response and emphasize the role of 14-3-3 proteins in modulating antiviral defenses.


Asunto(s)
Proteínas 14-3-3/metabolismo , Infecciones por Herpesviridae/inmunología , Herpesviridae/inmunología , Interferón Tipo I/farmacología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Proteínas 14-3-3/genética , Antivirales/farmacología , Células HeLa , Herpesviridae/efectos de los fármacos , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Unión Proteica , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
10.
Cell Microbiol ; 21(12): e13099, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31414579

RESUMEN

Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Colon/metabolismo , Células Epiteliales/metabolismo , Inestabilidad Genómica/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella enterica/metabolismo , Poliposis Adenomatosa del Colon/microbiología , Poliposis Adenomatosa del Colon/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Daño del ADN/genética , Células Epiteliales/microbiología , Células Epiteliales/patología , Genes Supresores de Tumor/fisiología , Humanos , Ratones , Mutágenos/metabolismo , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Transducción de Señal/genética , Microambiente Tumoral/genética
11.
Int J Cancer ; 144(1): 98-109, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29978480

RESUMEN

We have addressed the role of bacterial co-infection in viral oncogenesis using as model Epstein-Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram-negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV-negative epithelial cells to the virus in the presence of sub-lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co-infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV-induced malignant transformation of epithelial cells.


Asunto(s)
Aggregatibacter actinomycetemcomitans/fisiología , Transformación Celular Neoplásica , Células Epiteliales/microbiología , Células Epiteliales/virología , Herpesvirus Humano 4/fisiología , Activación Viral/fisiología , Toxinas Bacterianas/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Interacciones Microbianas/fisiología , Mutágenos/farmacología
12.
Microb Cell ; 5(5): 259-261, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799549

RESUMEN

Upon infection, viral nucleic acids are recognized by germline-encoded pattern-recognition receptors (PRRs), and cytosolic retinoic acid-inducible gene I (RIG-I)-like helicases (RLHs) that initiate signaling pathways resulting in the production of type I IFN and pro-inflammatory cytokines. Binding of RIG-I to viral nucleic acids triggers the formation of the RIG-I signalosome where RIG-I is ubiquitinated by the TRIM25 ligase and, with the help of 14-3-3 scaffolds, further translocated to mitochondrial anti-viral signalling proteins (MAVS). Subsequent ubiquitination-mediated events trigger transcriptional activation of the effectors of innate immunity. We have found a new mechanism by which herpesviruses interfere with this signalling pathway to favour the establishment of latency and promote virus replication. The cysteine protease encoded in the conserved N-terminal domain of the herpesvirus large tegument protein binds to 14-3-3 proteins and forms a tri-molecular complex with TRIM25, promoting the activation and autoubiquitination of the ligase. RIG-I is recruited to the complex but its ubiquitination is drastically reduced, which effectively inactivates downstream signalling and blocks the type I IFN response.

13.
PLoS Pathog ; 14(1): e1006852, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357390

RESUMEN

The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Herpesviridae/enzimología , Interferones/farmacología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Ubiquitinación , Replicación Viral
14.
Viruses ; 9(8)2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28792435

RESUMEN

The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.


Asunto(s)
Transformación Celular Viral , Regulación de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Homeostasis del Telómero , Telómero/fisiología , Linfocitos B/virología , Puntos de Control del Ciclo Celular , Línea Celular , Infecciones por Virus de Epstein-Barr/virología , Humanos , Telomerasa/metabolismo
15.
PLoS Pathog ; 13(4): e1006338, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28414785

RESUMEN

Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , MicroARNs/genética , Proteínas Nucleares/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Proteínas Virales/genética , Línea Celular , Regulación hacia Abajo , Genes Reporteros , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , MicroARNs/metabolismo , Proteínas Nucleares/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
16.
FEBS J ; 281(21): 4935-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25205475

RESUMEN

Post-translational modification by the small ubiquitin-like modifier (SUMO) regulates the cellular response to different types of stress and plays a pivotal role in the control of oncogenic viral infections. Here we investigated the capacity of microRNAs (miRNAs) encoded by Epstein-Barr virus to interfere with the SUMO signaling network. Using a computational strategy that scores different properties of miRNA-mRNA target pairs, we identified a minimal set of 575 members of the SUMO interactome that may be targeted by one or more Epstein-Barr virus miRNAs. A significant proportion of the candidates cluster in a functional network that controls chromatin organization, stress, DNA damage and immune responses, apoptosis and transforming growth factor beta signaling. Multiple components of the transforming growth factor beta signaling pathway were inhibited upon upregulation of the BamHI-H rightward open reading frame 1 (BHRF1) encoded miRNAs in cells transduced with recombinant lentiviruses or entering the productive virus cycle. These findings point to the capacity of viral miRNAs to interfere with SUMO-regulated cellular functions that control key aspects of viral replication and pathogenesis.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , MicroARNs/farmacología , Procesamiento Proteico-Postraduccional , ARN Viral/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Regiones no Traducidas 3'/genética , Apoptosis , Daño del ADN , Redes Reguladoras de Genes , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , Sistemas de Lectura Abierta , ARN/fisiología , Transducción de Señal , Sumoilación , Transducción Genética , Factor de Crecimiento Transformador beta/fisiología , Replicación Viral
18.
Semin Cancer Biol ; 26: 43-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24486644

RESUMEN

Tumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres. Here we review different strategies by which tumor viruses interfere with telomere homeostasis during cell transformation. This frequently involves the activation of telomerase, which assures both the integrity and functionality of telomeres. In addition, recent evidence suggests that oncogenic viruses may activate a recombination-based mechanism for telomere elongation known as Alternative Lengthening of Telomeres (ALT). This error-prone strategy promotes genomic instability and could play an important role in viral oncogenesis.


Asunto(s)
Virus Oncogénicos/fisiología , Telómero/genética , Telómero/metabolismo , Replicación Viral , Animales , Transformación Celular Viral , Senescencia Celular/genética , Inestabilidad Genómica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virología , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo , Infecciones Tumorales por Virus/virología
19.
PLoS Pathog ; 9(10): e1003664, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130483

RESUMEN

The large tegument proteins of herpesviruses contain N-terminal cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activities, but the function of the enzymes during virus replication remains largely unknown. Using as model BPLF1, the homologue encoded by Epstein-Barr virus (EBV), we found that induction of the productive virus cycle does not affect the total level of ubiquitin-conjugation but is accompanied by a BPLF1-dependent decrease of NEDD8-adducts and accumulation of free NEDD8. Expression of BPLF1 promotes cullin degradation and the stabilization of cullin-RING ligases (CRLs) substrates in the nucleus, while cytoplasmic CRLs and their substrates are not affected. The inactivation of nuclear CRLs is reversed by the N-terminus of CAND1, which inhibits the binding of BPLF1 to cullins and prevents efficient viral DNA replication. Targeting of the deneddylase activity to the nucleus is dependent on processing of the catalytic N-terminus by caspase-1. Inhibition of caspase-1 severely impairs viral DNA synthesis and the release of infectious virus, pointing a previously unrecognized role of the cellular response to danger signals triggered by EBV reactivation in promoting virus replication.


Asunto(s)
Caspasa 1/metabolismo , Núcleo Celular/enzimología , Replicación del ADN/fisiología , ADN Viral/biosíntesis , Herpesvirus Humano 4/fisiología , Proteínas Reguladoras y Accesorias Virales/biosíntesis , Replicación Viral/fisiología , Caspasa 1/genética , Línea Celular , Núcleo Celular/virología , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Citoplasma/enzimología , Citoplasma/metabolismo , Citoplasma/virología , ADN Viral/genética , Regulación Viral de la Expresión Génica/fisiología , Humanos , Proteína NEDD8 , Proteolisis , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética
20.
PLoS One ; 8(5): e62783, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667520

RESUMEN

The capacity of gamma-herpesviruses to establish lifelong infections is dependent on the expression of genome maintenance proteins (GMPs) that tether the viral episomes to cellular chromatin and allow their persistence in latently infected proliferating cells. Here we have characterized the chromatin interaction of GMPs encoded by viruses belonging to the genera Lymphocryptovirus (LCV) and Rhadinovirus (RHV). We found that, in addition to a similar diffuse nuclear localization and comparable detergent resistant interaction with chromatin in transfected cells, all GMPs shared the capacity to promote the decondensation of heterochromatin in the A03-1 reporter cell line. They differed, however, in their mobility measured by fluorescence recovery after photobleaching (FRAP), and in the capacity to recruit accessory molecules required for the chromatin remodeling function. While the AT-hook containing GMPs of LCVs were highly mobile, a great variability was observed among GMPs encoded by RHV, ranging from virtually immobile to significantly reduced mobility compared to LCV GMPs. Only the RHV GMPs recruited the bromo- and extra terminal domain (BET) proteins BRD2 and BRD4 to the site of chromatin remodeling. These findings suggest that differences in the mode of interaction with cellular chromatin may underlie different strategies adopted by these viruses for reprogramming of the host cells during latency.


Asunto(s)
Cromatina/metabolismo , Lymphocryptovirus , Rhadinovirus , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Línea Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Interfase , Ratones , Datos de Secuencia Molecular , Movimiento , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Factores de Transcripción/metabolismo , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...