Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140254, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742769

RESUMEN

Rare earth elements (REEs) are considered the limiting resources for advancing clean technologies and electronics. Because global REEs reserve is limited, non-conventional and secondary sources are being investigated for recovery. Here, we investigated wet and dry sand from seven Southern California beaches for sixteen REEs. These include five light REEs, two medium REEs, and nine heavy REEs, separated by their atomic weight. The mass of the magnetically separated compounds ranged from 15.19 to 129.91 g per kg of dry sand in the studied sea beaches in Southern California. The total REEs concentration ranged from 1168.1 to 6816.7 µg per kg of wet sand (dry sand basis) and 1474.7-7483.8 µg per kg of dry sand. Cerium (Ce) and Yttrium (Y) were the most prevalent REEs in these beaches ranging from 387.4 to 2241.1 µg kg-1 and 104.5-2302.3 µg kg-1 of sand respectively. This study found light REEs concentration accounted for 70-80% of total rare earth elements in the studied beaches. The concentrations of the analyzed REEs were significantly different (p < 0.05) from each other in the studied beaches. Additionally, Pearson correlation showed that the REEs were strongly correlated (r ≥ 0.83) with each other in the reported sea beaches, indicating a similar origin of the REEs. The dominant heavy metals in the studied samples were Vanadium (V), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), and Strontium (Sr). Dominant minerals identified in sands were quartz, anorthite, ilmenite, and xenotime. All the beaches are lowly enriched with REEs, and any of the REEs caused no ecological risk or pollution. Similarly, no pollution/ecological risk was observed for the analyzed heavy metals. This study identified beach sand as a potential REEs source and demonstrated an easy separation of REEs containing magnetic compounds from sand.


Asunto(s)
Metales Pesados , Metales de Tierras Raras , Arena , Metales de Tierras Raras/análisis , Metales Pesados/análisis , Itrio , California
2.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579044

RESUMEN

The cobalt-seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt-seleno-based complex exhibits a high mass activity (14.15 A g-1) and a much higher turn-over frequency (TOF) value (0.032 s-1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt-seleno systems as efficient OER electrocatalysts.


Asunto(s)
Cobalto/química , Electroquímica , Selenio/química , Agua/química , Catálisis , Modelos Moleculares
3.
Mikrochim Acta ; 187(8): 440, 2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32653955

RESUMEN

A simple binary copper selenide, CuSe nanostructure, has been investigated as electrochemical sensor for dopamine detection. The hydrothermally synthesized and electrodeposited CuSe nanostructures showed high sensitivity for dopamine detection with low limit of detection (LOD). A sensitivity of 26 µA/µM.cm2 was obtained with this electrochemical sensor which is ideal to detect even small fluctuations in the transient dopamine concentration. Apart from high sensitivity and low LOD, the dopamine oxidation on the catalyst surface also occurred at a low applied potential (< 0.18 V vs Ag|AgCl), thereby significantly increasing selectivity of the process specifically with respect to ascorbic and uric acids, which are considered to be the most prominent interferents for dopamine detection. Electrochemical redox tunability of the catalytic Cu center along with low coordination geometry is believed to enhance the rate of dopamine attachment and oxidation on the catalyst surface thereby reducing the applied potential. The presence of Cu also increases conductivity of the catalyst composite which further improves the charge transfer thus increasing the sensitivity of the device. This is the first report of electrochemical dopamine sensing with a simple binary selenide comprising earth-abundant elements and can have large significance in designing efficient sensors that can be transformative for understanding neurodegenerative diseases further. Graphical abstract.


Asunto(s)
Dopamina/sangre , Dopamina/orina , Nanopartículas del Metal/química , Compuestos de Selenio/química , Catálisis , Dopamina/química , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Oxidación-Reducción , Reproducibilidad de los Resultados
4.
ACS Omega ; 4(6): 11152-11162, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460215

RESUMEN

Developing Nonenzymatic glucose biosensors has recently been at the center of attention owing to their potential application in implantable and continuous glucose monitoring systems. In this article, nickel telluride nanostructure with the generic formula of Ni3Te2 has been reported as a highly efficient electrocatalyst for glucose oxidation, functional at a low operating potential. Ni3Te2 nanostructures were prepared by two synthesis methods, direct electrodeposition on the electrode and hydrothermal method. The electrodeposited Ni3Te2 exhibited a wide linear range of response corresponding to glucose oxidation exhibiting a high sensitivity of 41.615 mA cm-2 mM-1 and a low limit of detection (LOD) of 0.43 µM. The hydrothermally synthesized Ni3Te2, on the other hand, also exhibits an ultrahigh sensitivity of 35.213 mA cm-2 mM-1 and an LOD of 0.38 µM. The observation of high efficiency for glucose oxidation for both Ni3Te2 electrodes irrespective of the synthesis method further confirms the enhanced intrinsic property of the material toward glucose oxidation. In addition to high sensitivity and low LOD, Ni3Te2 electrocatalyst also has good selectivity and long-term stability in a 0.1 M KOH solution. Since it is operative at a low applied potential of 0.35 V vs Ag|AgCl, interference from other electrochemically active species is reduced, thus increasing the accuracy of this sensor.

5.
RSC Adv ; 9(65): 37939-37946, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541792

RESUMEN

A facile, innovative synthesis for the fabrication of NiCo2Se4-rGO on a Ni foam nanocomposite via a simple hydrothermal reaction is proposed. The as-prepared NiCo2Se4-rGO@Ni foam electrode was tested through pxrd, TEM, SEM, and EDS to characterize the morphology and the purity of the material. The bimetallic electrode exhibited outstanding electrochemical performance with a high specific capacitance of 2038.55 F g-1 at 1 A g-1. NiCo2Se4-rGO@Ni foam exhibits an extensive cycling stability after 1000 cycles by retaining 90% of its initial capacity. A superior energy density of 67.01 W h kg-1 along with a high power density of 903.61 W kg-1 further proved the high performance of this electrode towards hybrid supercapacitors. The excellent electrochemical performance of NiCo2Se4-rGO@Ni foam can be explained through the high electrocatalytic activity of NiCo2Se4 in combination with reduced graphene oxide which increases conductivity and surface area of the electrode. This study proved that NiCo2Se4-rGO@Ni foam can be utilized as a high energy density-high power density electrode in energy storage applications.

6.
J Mater Chem B ; 7(14): 2338-2348, 2019 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254682

RESUMEN

Uniform and porous CoNi2Se4 was successfully synthesized by electrodeposition onto a composite electrode comprising reduced graphene oxide (rGO) anchored on a Ni foam substrate (prepared hydrothermally). This CoNi2Se4-rGO@NF composite electrode has been employed as an electrocatalyst for the direct oxidation of glucose, thereby acting as a high-performance non-enzymatic glucose sensor. Direct electrochemical measurement with the as-prepared electrode in 0.1 M NaOH revealed that the CoNi2Se4-rGO nanocomposite has excellent electrocatalytic activity towards glucose oxidation in an alkaline medium with a sensitivity of 18.89 mA mM-1 cm-2 and a wide linear response from 1 µM to 4.0 mM at a low applied potential of +0.35 V vs. Ag|AgCl. This study also highlights the effect of decreasing the anion electronegativity on enhancing the electrocatalytic efficiency by lowering the potential needed for glucose oxidation. The catalyst composite also exhibits high selectivity towards glucose oxidation in the presence of several interferents normally found in physiological blood samples. A low glucose detection limit of 0.65 µM and long-term stability along with a short response time of approximately 4 seconds highlights the promising performance of the CoNi2Se4-rGO@NF electrode for non-enzymatic glucose sensing with high precision and reliability.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Electrodos , Grafito/química , Voluntarios Sanos , Humanos , Oxidación-Reducción
7.
Sci Rep ; 7(1): 2401, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28546568

RESUMEN

Herein we have shown that electrodeposited NiSe2 can be used as a bifunctional electrocatalyst under alkaline conditions to split water at very low potential by catalyzing both oxygen evolution and hydrogen evolution reactions at anode and cathode, respectively, achieving a very high electrolysis energy efficiency exceeding 80% at considerably high current densities (100 mA cm-2). The OER catalytic activity as well as electrolysis energy efficiency surpasses any previously reported OER electrocatalyst in alkaline medium and energy efficiency of an electrolyzer using state-of-the-art Pt and RuO2 as the HER and OER catalyst, respectively. Through detailed electrochemical and structural characterization, we have shown that the enhanced catalytic activity is attributed to directional growth of the electrodeposited film that exposes a Ni-rich lattice plane as the terminating plane, as well as increased covalency of the selenide lattice which decreases the Ni(II) to Ni(III) oxidation potential. Thereby, the high efficiency along with extended stability makes NiSe2 as the most efficient water electrolyzer known to-date.

8.
Chem Commun (Camb) ; 53(39): 5412-5415, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28451675

RESUMEN

CoNi2Se4 with a vacancy-ordered spinel structure shows excellent bifunctional electrocatalytic activity for water splitting in alkaline medium producing 10 mA cm-2 at a cell voltage of 1.61 V. For OER, an overpotential of 160 mV was needed for 10 mA cm-2 which is one of the lowest overpotentials reported to date.

9.
ChemSusChem ; 9(22): 3128-3132, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27619260

RESUMEN

We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SePi Pr2 )2 N}2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g-1 ) and a much higher TOF value (0.26 s-1 ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V.


Asunto(s)
Níquel/química , Compuestos Organometálicos/química , Selenio/química , Agua/química , Electroquímica , Hidrógeno/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
10.
ACS Appl Mater Interfaces ; 8(27): 17292-302, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27309595

RESUMEN

Electrodeposited Co7Se8 nanostructures exhibiting flake-like morphology show bifunctional catalytic activity for oxygen evolution and hydrogen evolution reaction (OER and HER, respectively) in alkaline medium with long-term durability (>12 h) and high Faradaic efficiency (99.62%). In addition to low Tafel slope (32.6 mV per decade), the Co7Se8 OER electrocatalyst also exhibited very low overpotential to achieve 10 mA cm(-2) (0.26 V) which is lower than other transition metal chalcogenide based OER electrocatalysts reported in the literature and significantly lower than the state-of-the-art precious metal oxides. A low Tafel slope (59.1 mV per decade) was also obtained for the HER catalytic activity in alkaline electrolyte. The OER catalytic activity could be further improved by creating arrays of 3-dimensional rod-like and tubular structures of Co7Se8 through confined electrodeposition on lithographically patterned nanoelectrodes. Such arrays of patterned nanostructures produced exceptionally high mass activity and gravimetric current density (∼68 000 A g(-1)) compared to the planar thin films (∼220 A g(-1)). Such high mass activity of the catalysts underlines reduction in usage of the active material without compromising efficiency and their practical applicability. The catalyst layer could be electrodeposited on different substrates, and an effect of the substrate surface on the catalytic activity was also investigated. The Co7Se8 bifunctional catalyst enabled water electrolysis in alkaline solution at a cell voltage of 1.6 V. The electrodeposition works with exceptional reproducibility on any conducting substrate and shows unprecedented catalytic performance especially with the patterned growth of catalyst rods and tubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...