Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 15(10): 1318-1330, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28710231

RESUMEN

Tuberous sclerosis complex (TSC) is a tumor-suppressor syndrome affecting multiple organs, including the brain, skin, kidneys, heart, and lungs. TSC is associated with mutations in TSC1 or TSC2, resulting in hyperactivation of mTOR complex 1 (mTORC1). Clinical trials demonstrate that mTORC1 inhibitors decrease tumor volume and stabilize lung function in TSC patients; however, mTOR inhibitors are cytostatic not cytocidal, and long-term benefits and toxicities are uncertain. Previously, we identified rapamycin-insensitive upregulation of cyclooxygenase 2 (PTGS2/COX2) and prostaglandin E2 (PGE2) production in TSC2-deficient cells and postulated that the action of excess PGE2 and its cognate receptors (EP) contributes to cell survival. In this study, we identify upregulation of EP3 (PTGER3) expression in TSC2-deficient cells, TSC renal angiomyolipomas, lymphangioleiomyomatosis lung nodules, and epileptic brain tubers. TSC2 negatively regulated EP3 expression via Rheb in a rapamycin-insensitive manner. The EP3 antagonist, L-798106, selectively suppressed the viability of TSC2-deficient cells in vitro and decreased the lung colonization of TSC2-deficient cells. Collectively, these data reveal a novel function of TSC2 and Rheb in the regulation of EP3 expression and cell viability.Implications: Therapeutic targeting of an aberrant PGE2-EP3 signaling axis may have therapeutic benefit for TSC patients and for other mTOR-hyperactive neoplasms. Mol Cancer Res; 15(10); 1318-30. ©2017 AACR.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Niño , Preescolar , Epilepsia/genética , Epilepsia/metabolismo , Femenino , Humanos , Lactante , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/metabolismo , Masculino , Ratones , Mutación , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Regulación hacia Arriba
2.
JCI Insight ; 1(19): e86629, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27882343

RESUMEN

Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient-derived cells' resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient-derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient-derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM.


Asunto(s)
Anoicis , Proteína 11 Similar a Bcl2/metabolismo , Estrógenos/fisiología , Enfermedades Pulmonares/patología , Linfangioleiomiomatosis/patología , Proteínas Supresoras de Tumor/genética , Animales , Bortezomib/farmacología , Femenino , Humanos , Pulmón/citología , Ratones , Ratones SCID , Proteína 2 del Complejo de la Esclerosis Tuberosa , Células Tumorales Cultivadas
3.
Cell Signal ; 28(12): 1904-1915, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27634387

RESUMEN

The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Adenosina Trifosfato/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Oncol Rep ; 28(3): 931-6, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22711061

RESUMEN

Mitogen-activated protein kinase phosphatase 5 (MKP-5)/DUSP10 acts as a phosphatase of stress-activated kinases (JNK and p38), but its activity towards ERK has not been demonstrated. In the present study we observed that MKP-5 interacts with ERK, retains it in the cytoplasm, suppresses its activation and downregulates ERK-dependent transcription. These data suggested a novel MKP-5 function as a scaffold protein for the ERK pathway. We analyzed MKP-5 gene expression in several tumors, and found that it is frequently upregulated in colorectal but not in lung and breast cancer, suggesting its association with the malignant phenotype of colon cancer.


Asunto(s)
Carcinoma/enzimología , Neoplasias del Colon/enzimología , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/genética , Genes Reporteros , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Luciferasas/biosíntesis , Luciferasas/genética , Sistema de Señalización de MAP Quinasas , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Elementos de Respuesta , Transcripción Genética , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Mol Cell Biochem ; 352(1-2): 155-62, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21360282

RESUMEN

The dual-specificity phosphatase (DUSP) 13 gene encodes two atypical DUSPs, DUSP13B/TMDP and DUSP13A/MDSP using alternative exons. DUSP13B protein is most highly expressed in testis, particularly in spermatocytes and round spermatids of the seminiferous tubules, while that of DUSP13A is restricted to skeletal muscle. Here, we show that DUSP13B inactivated MAPK activation in the order of selectivity, JNK = p38>ERK in cells, while DUSP13A did not show MAPK phosphatase activity. Reporter gene analysis showed that DUSP13B had significant inhibitory effect on AP-1-dependent gene expression, but DUSP13A did not. To our knowledge, DUSP13B is the first identified testis-specific phosphatase that inhibits stress-activated MAPKs. These data suggest an important role for DUSP13B in protection from external stress during spermatogenesis.


Asunto(s)
Fosfatasas de Especificidad Dual/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Transcripción AP-1/fisiología , Animales , Línea Celular , Activación Enzimática , Exones , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología
6.
Dev Cell ; 18(5): 763-74, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20493810

RESUMEN

Earlier, we reported that S6K1(-/-) mice have reduced body fat mass, have elevated rates of lipolysis, have severely decreased adipocyte size, and are resistant to high fat diet (HFD)-induced obesity. Here we report that adipocytes of S6K1(-/-) mice on a HFD have the capacity to increase in size to a degree comparable to that of wild-type (WT) mice, but not in number, indicating an unexpected lesion in adipogenesis. Tracing this lesion revealed that S6K1 is dispensable for terminal adipocyte differentiation, but is involved in the commitment of embryonic stem cells to early adipocyte progenitors. We further show that absence of S6K1 attenuates the upregulation of transcription factors critical for commitment to adipogenesis. These results led to the conclusion that a lack of S6K1 impairs the generation of de novo adipocytes when mice are challenged with a HFD, consistent with a reduction in early adipocyte progenitors.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Adipocitos/patología , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo Blanco/anatomía & histología , Animales , Humanos , Hiperplasia/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/prevención & control , ARN Mensajero/genética
7.
Biochem Biophys Res Commun ; 393(2): 201-6, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20122898

RESUMEN

MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.


Asunto(s)
Citoplasma/enzimología , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Activación Transcripcional , Transporte Activo de Núcleo Celular , Animales , Células COS , Núcleo Celular/enzimología , Chlorocebus aethiops , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
8.
J Biol Chem ; 280(15): 14716-22, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15689616

RESUMEN

MAPK cascades can be negatively regulated by members of the MAPK phosphatase (MKP) family. However, how MKP activity is regulated is not well characterized. MKP-7, a JNK-specific phosphatase, possesses a unique COOH-terminal stretch (CTS) in addition to domains conserved among MKP family members. The CTS contains several motifs such as a nuclear localization signal, a nuclear export signal, PEST sequences, and a serine residue (Ser-446) that can be phosphorylated by activated ERK, suggesting an important regulatory role(s).(35)S-pulse labeling experiments indicate that the half-life of MKP-7 is 1.5 h, a period significantly elongated by deleting the CTS. We also show that overexpressed MKP-7 is polyubiquitinated when co-expressed with ubiquitin and that proteasome inhibitors markedly inhibit MKP-7 degradation. We also determined that MKP-7 phosphorylated at Ser-446 has a longer half-life than unphosphorylated form of the wild type protein, as does a phospho-mimic mutant of MKP-7. These results indicate that activation of the ERK pathway strongly blocks JNK activation through stabilization of MKP-7 mediated by phosphorylation.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Serina/química , Secuencias de Aminoácidos , Animales , Células COS , Núcleo Celular/metabolismo , ADN/metabolismo , Fosfatasas de Especificidad Dual , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Eliminación de Gen , Humanos , Immunoblotting , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 4 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Modelos Biológicos , Fosforilación , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Tiempo , Transfección , Ubiquitina/metabolismo
9.
Biochem J ; 383(Pt. 3): 447-55, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15281913

RESUMEN

We have isolated a mouse cDNA for a novel dual-specificity phosphatase designated LDP-3 (low-molecular-mass dual-specificity phosphatase 3). The 450 bp open reading frame encodes a protein of 150 amino acids with a predicted molecular mass of 16 kDa. Northern blot and reverse transcription-PCR analyses show that LDP-3 transcripts are expressed in almost all mouse tissues examined. In vitro analyses using several substrates and inhibitors indicate that LDP-3 possesses intrinsic dual-specificity phosphatase activity. When expressed in mammalian cells, LDP-3 protein is localized mainly to the apical submembrane area. Forced expression of LDP-3 does not alter activation of ERK (extracellular-signal-regulated kinase), but rather enhances activation of JNK (c-Jun N-terminal kinase) and p38 and their respective upstream kinases MKK4 (mitogen-activated protein kinase kinase 4) and MKK6 in cells treated with 0.4 M sorbitol. By screening with a variety of stimuli, we found that LDP-3 specifically enhances the osmotic stress-induced activation of JNK and p38.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS/enzimología , Línea Celular , Chlorocebus aethiops , Fosfatasas de Especificidad Dual , Activación Enzimática/genética , Activación Enzimática/fisiología , Humanos , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Mutación/genética , Mutación/fisiología , Presión Osmótica , Proteínas Tirosina Fosfatasas/genética , Especificidad por Sustrato , Transfección/métodos
10.
J Biol Chem ; 278(34): 32448-56, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12794087

RESUMEN

We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK >> p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Catálisis , Fosfatasas de Especificidad Dual , Células HeLa , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Datos de Secuencia Molecular , Fosforilación , Proteínas Tirosina Fosfatasas/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA