Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.230
Filtrar
1.
Osteoarthr Cartil Open ; 5(3): 100389, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37560389

RESUMEN

Objective: To establish an animal model of modified cuff tear arthropathy (mCTA) in order to better replicate the pathophysiology associated with rotator cuff tear-induced humeral head collapse. Design: mCTA was induced by transection of the rotator cuff, the long head of the biceps brachii (LHB), and superior half of the joint capsule in the right shoulder of 12-week-old rats; the left shoulder underwent sham surgery. The severity of CTA was quantitated using the Murine Shoulder Arthritis Score (MSAS). The trabecular bone of the humeral head and metaphysis was analyzed using bone histomorphometry. The expression of proinflammatory cytokines and catabolic enzymes was evaluated immunohistochemically. Results: In the mCTA model, the MSAS increased starting from 2 weeks after induction, and there was notable subchondral bone collapse with fibrous cells at 4 weeks. The mCTA cartilage exhibited positive staining for TNF-α, IL-1ß/6, MMP-3/13, and ADAMTS5. The trabecular bone volume was reduced not only in the subchondral bone but also in the metaphysis of the humeri, and bone resorption was enhanced in these areas. In the collapsed subchondral bone, both bone formation and resorption were increased. The fibrous cells showed expression of TNF-α, IL-6, and MMP-13, along with specific markers of mesenchymal stem cells. Furthermore, the fibrous cells showed osteoblastic characteristics (RUNX2-positive) and expressed RANKL. Conclusions: The LHB and the capsuloligamentous complex are critical stabilizers of the glenohumeral joint, serving to prevent the advancement of CTA following massive rotator cuff tears. Fibrous cells appear to play a role in the humeral head bone resorption.

2.
J Nutr Health Aging ; 27(5): 340-347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37248757

RESUMEN

OBJECTIVES: Preserving sufficient oral function and maintaining aadequate nutrition are essential for preventing physical frailty and the following long-term care. We recently developed the 6-month Comprehensive Awareness Modification of Mouth, Chewing And Meal (CAMCAM) program, in which participants gather monthly to learn about oral health and nutrition while eating a textured lunch together. This study examined whether the CAMCAM program could improve attitude and behavior towards oral health, mastication, and diet as well as ameliorate oral frailty in community-dwelling older adults. DESIGN: Single-arm pre-post comparison study. SETTING AND PARTICIPANTS: A total of 271 community-dwelling adults (72.3 ± 5.7 years of age; 159 women [58.7%]) in 4 Japanese municipalities were recruited, of which 249 participants (92%) were assessed at the final evaluation. INTERVENTION: Participants gathered once a month at community centers to learn about oral health and nutrition while eating a "munchy" textured lunch containing proper nutrition. MEASUREMENTS: Oral frailty, frailty, and eating behavior were evaluated with the Oral Frailty Index-8 (OFI-8), Kihon checklist (KCL), and CAMCAM checklist, respectively. Participants were divided into Oral frailty (OF) and Robust groups according to OFI-8 scores. The differences in KCL and CAMCAM checklist results between the OF and Robust groups were statistically tested along with changes in scores after the program. RESULTS: KCL and CAMCAM checklist scores were significantly lower in the OF group at the initial assessment. OFI-8 and KCL findings were significantly improved in the OF group after completing the program (all P <0.05). Regarding the CAMCAM checklist, awareness of chewing improved significantly in the Robust group (P=0.009), with a similar tendency in the OF group (P=0.080). CONCLUSION: The findings of this pilot study suggest that the CAMCAM program may improve both oral and systemic frailty in addition to attitudes towards chewing, oral health, and meals, especially in individuals with oral frailty. The CAMCAM program merits expansion as a community-based frailty prevention program.


Asunto(s)
Fragilidad , Humanos , Femenino , Anciano , Fragilidad/prevención & control , Masticación , Proyectos Piloto , Salud Bucal , Conducta Alimentaria , Boca , Comidas , Vida Independiente , Actitud , Anciano Frágil , Japón , Evaluación Geriátrica
3.
J Dairy Sci ; 106(4): 2551-2572, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797192

RESUMEN

Maintaining genetic variation in a population is important for long-term genetic gain. The existence of subpopulations within a breed helps maintain genetic variation and diversity. The 20,990 genotyped animals, representing the breeding animals in the year 2014, were identified as the sires of animals born after 2010 with at least 25 progenies, and females measured for type traits within the last 2 yr of data. K-means clustering with 5 clusters (C1, C2, C3, C4, and C5) was applied to the genomic relationship matrix based on 58,990 SNP markers to stratify the selected candidates into subpopulations. The general higher inbreeding resulting from within-cluster mating than across-cluster mating suggests the successful stratification into genetically different groups. The largest cluster (C4) contained animals that were less related to each animal within and across clusters. The average fixation index was 0.03, indicating that the populations were differentiated, and allele differences across the subpopulations were not due to drift alone. Starting with the selected candidates within each cluster, a family unit was identified by tracing back through the pedigree, identifying the genotyped ancestors, and assigning them to a pseudogeneration. Each of the 5 families (F1, F2, F3, F4, and F5) was traced back for 10 generations, allowing for changes in frequency of individual SNPs over time to be observed, which we call allele frequencies change. Alternative procedures were used to identify SNPs changing in a parallel or nonparallel way across families. For example, markers that have changed the most in the whole population, markers that have changed differently across families, and genes previously identified as those that have changed in allele frequency. The genomic trajectory taken by each family involves selective sweeps, polygenic changes, hitchhiking, and epistasis. The replicate frequency spectrum was used to measure the similarity of change across families and showed that populations have changed differently. The proportion of markers that reversed direction in allele frequency change varied from 0.00 to 0.02 if the rate of change was greater than 0.02 per generation, or from 0.14 to 0.24 if the rate of change was greater than 0.005 per generation within each family. Cluster-specific SNP effects for stature were estimated using only females and applied to obtain indirect genomic predictions for males. Reranking occurs depending on SNP effects used. Additive genetic correlations between clusters show possible differences in populations. Further research is required to determine how this knowledge can be applied to maintain diversity and optimize selection decisions in the future.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Femenino , Masculino , Animales , Genotipo , Frecuencia de los Genes , Alelos , Linaje , Polimorfismo de Nucleótido Simple/genética , Selección Genética
4.
J Dairy Sci ; 105(12): 9810-9821, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241432

RESUMEN

High relatedness in the US Holstein breed can be attributed to the increased rate of inbreeding that resulted from strong selection and the extensive use of a few bulls via reproductive biotechnology. The objectives of this study were to determine whether clustering could separate selected candidates into genetically different groups and whether such clustering could reduce the expected inbreeding of the next generation. A genomic relationship matrix composed of 1,145 sires with the most registered progeny in the breed born after 1985 was used for principal component analysis and k-means clustering. The 5 clusters reduced the variance by 25% and contained 171 (C1), 252 (C2), 200 (C3), 244 (C4), and 278 (C5) animals, respectively. The 2 most predominant families were C1 and C2, while C4 contained the most international animals. On average, C1 and C5 contained older animals; the average birth year per cluster was 1988 (C1), 1996 (C2 and C3), 1999 (C4), and 1990 (C5). Increasing to 10 clusters allowed the separation of the predominant sons. Statistically significant differences were observed for indices (net merit index, cheese merit index, and fluid merit index), daughter pregnancy rate, and production traits (milk, fat, and protein), with older clusters having lower merit for production but higher for reproduction. K-means clustering was also used for 20,099 animals considered as selection candidates. Based on the reduction in variance achieved by clustering, 5 to 7 clusters were appropriate. The number of animals in each cluster was 3,577 (C1), 3,073 (C2), 3,302 (C3), 5,931 (C4), and 4,216 (C5). The expected inbreeding from within or across cluster mating was calculated using the complete pedigree, assuming the mean inbreeding of animals born in the same year when parents are unknown. Generally, inbreeding was highest within cluster mating and lowest across cluster mating. Even when 10 clusters were used, one cluster always gave low inbreeding in all scenarios. This suggests that this cluster contains animals that differ from all other groups but still contains enough diversity within itself. Based on lower across cluster inbreeding, up to 7 clusters were appropriate. Statistically significant differences in genomic estimated breeding values were found between clusters. The rankings of clusters for different traits were mostly the same except for reproduction and fat. Results show that diversity within the population exists and clustering of selection candidates can reduce the expected inbreeding of the next generations.


Asunto(s)
Genoma , Endogamia , Bovinos/genética , Animales , Masculino , Linaje , Genómica , Leche
5.
Radiography (Lond) ; 28(3): 725-731, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35428571

RESUMEN

INTRODUCTION: Many patients experience anxiety, not limited to claustrophobia, before magnetic resonance imaging (MRI) examination. We performed a non-randomized controlled trial to evaluate whether a patient-friendly audiovisual (AV) system in the MR scanner room reduces patient anxiety. METHODS: We randomly selected 61 participants from outpatients who required brain MRI examination. Patients were informed that they could choose to undergo an MRI examination with a patient-friendly AV system (Ambient Experience, Philips Healthcare, Best, The Netherlands) or the standard system. To complete the MRI examination without affecting clinical practice, all patients who preferred the patient-friendly AV system were assigned to the preferring AV group. Patients who indicated that either system was acceptable were randomly assigned to the no preference but allocated AV group or control (using the standard system) groups. In both groups, state anxiety using the State-Trait Anxiety Inventory (STAI) was assessed before and after the MRI examination (A-State-before and A-State-after MRI, respectively). The changes in A-State-before and A-State-after MRI were categorized as follows: relieved high-state anxiety, no change in high-state anxiety, stable easiness, and intensified anxiety. RESULTS: Among the 61 included patients, 19 were assigned to the preferring AV group, 20 to the no preference but allocated AV group, and 22 to the control group. There were no significant differences between the group. However, in patients with high-state anxiety before MRI, the preferring AV group and the no preference but allocated AV group, which used the patient-friendly AV system, relieved high-state anxiety by 63.6% (7 of 11 patients) and 81.8% (9 of 11 patients), respectively. In contrast, the control group using the standard system relieved high-level anxiety by only 42.9% (three out of seven patients). CONCLUSION: The patient-friendly AV system may reduce anxiety in patients undergoing MRI examinations. IMPLICATIONS FOR PRACTICE: The patient-friendly AV system may reduce anxiety in patients undergoing MRI examination by providing a more patient-centered MRI examination environment. These findings may help ameliorate negative perceptions associated with MRI examination.


Asunto(s)
Ansiedad , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Países Bajos
6.
J Dairy Sci ; 104(12): 12713-12723, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34538484

RESUMEN

Cow genotypes are expected to improve the accuracy of genomic estimated breeding values (GEBV) for young bulls in relatively small populations such as Thai Holstein-Friesian crossbred dairy cattle in Thailand. The objective of this study was to investigate the effect of cow genotypes on the predictive ability and individual accuracies of GEBV for young dairy bulls in Thailand. Test-day data included milk yield (n = 170,666), milk component traits (fat yield, protein yield, total solids yield, fat percentage, protein percentage, and total solids percentage; n = 160,526), and somatic cell score (n = 82,378) from 23,201, 82,378, and 13,737 (for milk yield, milk component traits, and SCS, respectively) cows calving between 1993 and 2017, respectively. Pedigree information included 51,128; 48,834; and 32,743 animals for milk yield, milk component traits, and somatic cell score, respectively. Additionally, 876, 868, and 632 pedigreed animals (for milk yield, milk component traits, and SCS, respectively) were genotyped (152 bulls and 724 cows), respectively, using Illumina Bovine SNP50 BeadChip. We cut off the data in the last 6 yr, and the validation animals were defined as genotyped bulls with no daughters in the truncated set. We calculated GEBV using a single-step random regression test-day model (SS-RR-TDM), in comparison with estimated breed value (EBV) based on the pedigree-based model used as the official method in Thailand (RR-TDM). Individual accuracies of GEBV were obtained by inverting the coefficient matrix of the mixed model equations, whereas validation accuracies were measured by the Pearson correlation between deregressed EBV from the full data set and (G)EBV predicted with the reduced data set. When only bull genotypes were used, on average, SS-RR-TDM increased individual accuracies by 0.22 and validation accuracies by 0.07, compared with RR-TDM. With cow genotypes, the additional increase was 0.02 for individual accuracies and 0.06 for validation accuracies. The inflation of GEBV tended to be reduced using cow genotypes. Genomic evaluation by SS-RR-TDM is feasible to select young bulls for the longitudinal traits in Thai dairy cattle, and the accuracy of selection is expected to be increased with more genotypes. Genomic selection using the SS-RR-TDM should be implemented in the routine genetic evaluation of the Thai dairy cattle population. The genetic evaluation should consider including genotypes of both sires and cows.


Asunto(s)
Bovinos , Lactancia , Leche , Animales , Bovinos/genética , Industria Lechera , Femenino , Genoma , Genómica , Genotipo , Lactancia/genética , Masculino , Fenotipo , Tailandia
7.
J Dairy Sci ; 104(5): 5843-5853, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33663836

RESUMEN

The objective of this study was to assess the reliability and bias of estimated breeding values (EBV) from traditional BLUP with unknown parent groups (UPG), genomic EBV (GEBV) from single-step genomic BLUP (ssGBLUP) with UPG for the pedigree relationship matrix (A) only (SS_UPG), and GEBV from ssGBLUP with UPG for both A and the relationship matrix among genotyped animals (A22; SS_UPG2) using 6 large phenotype-pedigree truncated Holstein data sets. The complete data included 80 million records for milk, fat, and protein yields from 31 million cows recorded since 1980. Phenotype-pedigree truncation scenarios included truncation of phenotypes for cows recorded before 1990 and 2000 combined with truncation of pedigree information after 2 or 3 ancestral generations. A total of 861,525 genotyped bulls with progeny and cows with phenotypic records were used in the analyses. Reliability and bias (inflation/deflation) of GEBV were obtained for 2,710 bulls based on deregressed proofs, and on 381,779 cows born after 2014 based on predictivity (adjusted cow phenotypes). The BLUP reliabilities for young bulls varied from 0.29 to 0.30 across traits and were unaffected by data truncation and number of generations in the pedigree. Reliabilities ranged from 0.54 to 0.69 for SS_UPG and were slightly affected by phenotype-pedigree truncation. Reliabilities ranged from 0.69 to 0.73 for SS_UPG2 and were unaffected by phenotype-pedigree truncation. The regression coefficient of bull deregressed proofs on (G)EBV (i.e., GEBV and EBV) ranged from 0.86 to 0.90 for BLUP, from 0.77 to 0.94 for SS_UPG, and was 1.00 ± 0.03 for SS_UPG2. Cow predictivity ranged from 0.22 to 0.28 for BLUP, 0.48 to 0.51 for SS_UPG, and 0.51 to 0.54 for SS_UPG2. The highest cow predictivities for BLUP were obtained with the most extreme truncation, whereas for SS_UPG2, cow predictivities were also unaffected by phenotype-pedigree truncations. The regression coefficient of cow predictivities on (G)EBV was 1.02 ± 0.02 for SS_UPG2 with the most extreme truncation, which indicated the least biased predictions. Computations with the complete data set took 17 h with BLUP, 58 h with SS_UPG, and 23 h with SS_UPG2. The same computations with the most extreme phenotype-pedigree truncation took 7, 36, and 15 h, respectively. The SS_UPG2 converged in fewer rounds than BLUP, whereas SS_UPG took up to twice as many rounds. Thus, the ssGBLUP with UPG assigned to both A and A22 provided accurate and unbiased evaluations, regardless of phenotype-pedigree truncation scenario. Old phenotypes (before 2000 in this data set) did not affect the reliability of predictions for young selection candidates, especially in SS_UPG2.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Bovinos/genética , Femenino , Genómica , Genotipo , Masculino , Linaje , Fenotipo , Embarazo , Reproducibilidad de los Resultados
8.
JDS Commun ; 2(6): 356-360, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36337117

RESUMEN

Over half a million Holsteins are being genotyped annually in the United States. The computational cost of including all genotypes in single-step genomic (ssG)BLUP is high, although it is feasible to conduct large-scale genomic prediction using an efficient algorithm such as APY (algorithm for proven and young). An effective method to further reduce the computing cost could be the use of indirect genomic predictions (IGP) for genotyped animals when they have neither progeny nor phenotypes. These young genotyped animals have no effect on the other genotyped animals and could have their genomic prediction done indirectly. The main objective of this study was to calculate IGP for various groups of genotyped animals and investigate the reduction in computing time as well as bias and accuracy of the IGP. We compared IGP with genomic (G)EBV for 18 linear type traits in US Holsteins, including 2.3 million (M) genotyped animals. The full data set consisted of 10.9M records for 18 linear type traits up to 2018 calving, 13.6M animals in the pedigree, and 2.3M animals genotyped for 79K SNP. For IGP, ssGBLUP included all genotyped animals except those with neither progeny nor phenotypes by year from 2014 to 2018 (i.e., the target animals). The SNP marker effects were computed based on GEBV for genotyped animals that had progeny, or phenotypes, or both. Further, IGP were calculated for target genotyped animals in each year group. For all genotyped animal groups from 2014 to 2018, the coefficients of determination (R2) of a linear regression of GEBV on IGP were 0.960 for males and 0.954 for females for 18 traits on average. To reduce computing costs, the SNP marker effects were calculated based on GEBV from randomly selected genotyped animals from 15K to 60K. By randomly selecting a small number of genotyped animals, the computing time was dramatically reduced. As more genotyped animals were randomly selected to calculate SNP effects, R2 was higher (more accurate) and the regression coefficient was lower (more inflated IGP). In a practical genomic evaluation in US Holsteins, to get sufficient contributions from GEBV, 25K to 35K is a rational number of genotyped animals that can be randomly selected to compute SNP effects and obtain accurate and unbiased IGP. Considering the computing time and both unbiasedness and accuracy of IGP, genomic evaluation can be conducted separately in GEBV for genotyped animals with phenotypes or progeny and in IGP for young genotyped animals. This can be a practical solution when conducting a large-scale genomic evaluation and would enable more frequent evaluation at lower cost, especially when many genotyped animals have neither phenotypes nor progeny.

10.
J Dairy Sci ; 102(11): 9995-10011, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31477296

RESUMEN

Estimating single nucleotide polymorphism (SNP) effects over time is essential to identify and validate candidate genes (or quantitative trait loci) associated with time-dependent variation of economically important traits and to better understand the underlying mechanisms of lactation biology. Therefore, in this study, we aimed to estimate time-dependent effects of SNP and identifying candidate genes associated with milk (MY), fat (FY), and protein (PY) yields, and somatic cell score (SCS) in the first 3 lactations of Canadian Ayrshire, Holstein, and Jersey breeds, as well as suggest their potential pattern of phenotypic effect over time. Random regression coefficients for the additive direct genetic effect were estimated for each animal using single-step genomic BLUP, based on 2 random regression models: one considering MY, FY, and PY in the first 3 lactations and the other considering SCS in the first 3 lactations. Thereafter, SNP solutions were obtained for random regression coefficients, which were used to estimate the SNP effects over time (from 5 to 305 d in lactation). The top 1% of SNP that showed a high magnitude of SNP effect in at least 1 d in lactation were selected as relevant SNP for further analyses of candidate genes, and clustered according to the trajectory of their SNP effects over time. The majority of SNP selected for MY, FY, and PY increased the magnitude of their effects over time, for all breeds. In contrast, for SCS, most selected SNP decreased the magnitude of their effects over time, especially for the Holstein and Jersey breeds. In general, we identified a different set of candidate genes for each breed, and similar genes were found across different lactations for the same trait in the same breed. For some of the candidate genes, the suggested pattern of phenotypic effect changed among lactations. Among the lactations, candidate genes (and their suggested phenotypic effect over time) identified for the second and third lactations were more similar to each other than for the first lactation. Well-known candidate genes with major effects on milk production traits presented different suggested patterns of phenotypic effect across breeds, traits, and lactations in which they were identified. The candidate genes identified in this study can be used as target genes in studies of gene expression.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Animales , Canadá , Bovinos/fisiología , Industria Lechera , Femenino , Lactancia/genética , Leche , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Especificidad de la Especie
11.
J Dairy Sci ; 102(11): 9956-9970, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31495630

RESUMEN

The objectives of this study were to investigate bias in genomic predictions for dairy cattle and to find a practical approach to reduce the bias. The simulated data included phenotypes, pedigrees, and genotypes, mimicking a dairy cattle population (i.e., cows with phenotypes and bulls with no phenotypes) and assuming selection by breeding values or no selection. With the simulated data, genomic estimated breeding values (GEBV) were calculated with a single-step genomic BLUP and compared with true breeding values. Phenotypes and genotypes were simulated in 10 generations and in the last 4 generations, respectively. Phenotypes in the last generation were removed to predict breeding values for those individuals using only genomic and pedigree information. Complete pedigrees and incomplete pedigrees with 50% missing dams were created to construct the pedigree-based relationship matrix with and without inbreeding. With missing dams, unknown parent groups (UPG) were assigned in relationship matrices. Regression coefficients (b1) and coefficients of determination (R2) of true breeding values on (G)EBV were calculated to investigate inflation and accuracy in GEBV for genotyped animals, respectively. In addition to the simulation study, 18 linear type traits of US Holsteins were examined. For the 18 type traits, b1 and R2 of GEBV with full data sets on GEBV with partial data sets for young genotyped bulls were calculated. The results from the simulation study indicated inflation in GEBV for genotyped males that were evaluated with only pedigree and genomic information under BLUP selection. However, when UPG for only pedigree-based relationships were included, the inflation was reduced, accuracy was highest, and genetic trends had no bias. For the linear type traits, when UPG for only pedigree-based relationships were included, the results were generally in agreement with those from the simulation study, implying less bias in genetic trends. However, when including no UPG, UPG in pedigree-based relationships, or UPG in genomic relationships, inflation and accuracy in GEBV were similar. The results from the simulation and type traits suggest that UPG must be defined accurately to be estimable and inbreeding should be included in pedigree-based relationships. In dairy cattle, known pedigree information with inbreeding and estimable UPG plays an important role in improving compatibility between pedigree-based and genomic relationship matrices, resulting in more reliable genomic predictions.


Asunto(s)
Sesgo , Bovinos/genética , Selección Artificial , Animales , Femenino , Genotipo , Masculino , Modelos Genéticos , Linaje , Fenotipo
12.
J Nutr Health Aging ; 23(7): 669-676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367733

RESUMEN

OBJECTIVES: Proper nutrition and physical exercises are essential to prevent frailty in older adults. Proper masticatory performance and oral function may influence on physical activities as well since the mouth is the entrance of nutrition and digestion. Thus, the present study aimed to test the combined program of specially devised lunch gatherings containing textured foods with oral and physical exercises on the improvement of oral and physical function in community-dwelling older adults. DESIGN: A Cluster randomized controlled trial; Setting and Participants: Eighty-six community-dwelling older adults in Daito city, Japan, were randomly assigned into control (n = 43) or intervention (n = 43) groups. INTERVENTION: The control group performed the physical exercise regimen only. The intervention group participated in a 12-week physical and oral exercise program and ate a so-called "munchy lunch" that introduced textured foods with proper nutrients together after performing the physical exercise twice a week following brief dietary instruction at the intervention onset. Physical training and lunch gatherings were held at local public centers. MEASUREMENTS: The differences in measured variables for physical and oral function between baseline and 12 weeks of intervention were statistically tested. RESULTS: Oral function as measured by tongue pressure increased significantly in the intervention group (p=0.031), but not in the control group. Physical properties and activities, including body fat percentage and results of the timed up and go test, decreased more significantly in the intervention group than in controls (p<0.05). CONCLUSIONS: Our findings suggest that a combined program of textured lunch gatherings with oral and physical exercises may improve physical and oral function as a preventative approach for frailty in community-dwelling older adults.


Asunto(s)
Terapia por Ejercicio/métodos , Fragilidad/prevención & control , Músculos Masticadores/fisiología , Estado Nutricional/fisiología , Lengua/fisiología , Anciano , Anciano de 80 o más Años , Ejercicio Físico/fisiología , Femenino , Humanos , Vida Independiente , Japón , Almuerzo , Masculino , Masticación/fisiología , Comidas , Equilibrio Postural/fisiología , Presión , Estudios de Tiempo y Movimiento
13.
J Dairy Sci ; 102(3): 2365-2377, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638992

RESUMEN

Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G-1) and pedigree (A-122) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G-1 and A-122 matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G-1 and A-122 matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds.


Asunto(s)
Cruzamiento/métodos , Bovinos/genética , Genómica/métodos , Genotipo , Animales , Canadá , Industria Lechera , Genoma , Masculino , Modelos Genéticos , Análisis de Regresión , Reproducibilidad de los Resultados , Especificidad de la Especie
14.
J Dairy Sci ; 102(3): 2336-2346, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638995

RESUMEN

The objective was to compare methods of modeling missing pedigree in single-step genomic BLUP (ssGBLUP). Options for modeling missing pedigree included ignoring the missing pedigree, unknown parent groups (UPG) based on A (the numerator relationship matrix) or H (the unified pedigree and genomic relationship matrix), and metafounders. The assumptions for the distribution of estimated breeding values changed with the different models. We simulated data with heritabilities of 0.3 and 0.1 for dairy cattle populations that had more missing pedigrees for animals of lesser genetic merit. Predictions for the youngest generation and UPG solutions were compared with the true values for validation. For both traits, ssGBLUP with metafounders provided accurate and unbiased predictions for young animals while also appropriately accounting for genetic trend. Accuracy was least and bias was greatest for ssGBLUP with UPG for H for the trait with heritability of 0.3 and with UPG for A for the trait with heritability of 0.1. For the trait with heritability of 0.1 and UPG for H, the UPG accuracy (SD) was -0.49 (0.12), suggesting poor estimates of genetic trend despite having little bias for validations on young, genotyped animals. Problems with UPG estimates were likely caused by the lesser amount of information available for the lower heritability trait. Hence, UPG need to be defined differently based on the trait and amount of information. More research is needed to investigate accounting for UPG in A22 to better account for missing pedigrees for genotyped animals.


Asunto(s)
Bovinos/genética , Genómica/métodos , Linaje , Animales , Cruzamiento , Industria Lechera , Femenino , Modelos Lineales , Masculino , Modelos Genéticos
15.
J Dairy Sci ; 102(3): 2330-2335, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639016

RESUMEN

The purpose of this study was to determine whether multi-country genomic evaluation can be accomplished by multiple-trait genomic best linear unbiased predictor (GBLUP) without sharing genotypes of important animals. Phenotypes and genotypes with 40k SNP were simulated for 25,000 animals, each with 4 traits assuming the same genetic variance and 0.8 genetic correlations. The population was split into 4 subpopulations corresponding to 4 countries, one for each trait. Additionally, a prediction population was created from genotyped animals that were not present in the individual countries but were related to each country's population. Genomic estimated breeding values were computed for each country and subsequently converted to SNP effects. Phenotypes were reconstructed for the prediction population based on the SNP effects of a country and the prediction animals' genotypes. The prediction population was used as the basis for the international evaluation, enabling bull comparisons without sharing genotypes and only sharing SNP effects. The computations were such that SNP effects computed within-country or in the prediction population were the same. Genomic estimated breeding values were calculated by single-trait GBLUP for within-country and multiple-trait GBLUP for multi-country predictions. The true accuracy for the prediction population with reconstructed phenotypes was at most 0.02 less than the accuracy with the original data. The differences increased when countries were assumed unequally sized. However, accuracies by multiple-trait GBLUP with the prediction population were always greater than accuracies from any single within-country prediction. Multi-country genomic evaluations by multiple-trait GBLUP are possible without using original genotypes at a cost of lower accuracy compared with explicitly combining countries' data.


Asunto(s)
Cruzamiento , Bovinos/genética , Genotipo , Polimorfismo de Nucleótido Simple , Animales , Modelos Lineales , Masculino , Modelos Genéticos
16.
J Dairy Sci ; 102(3): 2308-2318, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639024

RESUMEN

The objective of this study was to model differences in pedigree accuracy caused by selective genotyping. As genotypes are used to correct pedigree errors, some pedigree relationships are more accurate than others. These accuracy differences can be modeled with uncertain parentage models that distribute the paternal (maternal) contribution across multiple sires (dams). In our case, the parents were the parent on record and an unknown parent group to account for pedigree relationships that were not confirmed through genotypes. Pedigree accuracy was addressed through simulation and through North American Holstein data. Data were simulated to be representative of the dairy industry with heterogeneous pedigree depth, pedigree accuracy, and genotyping. Holstein data were obtained from the official evaluation for milk, fat, and protein. Two models were compared: the traditional approach, assuming accurate pedigrees, and uncertain parentage, assuming variable pedigree accuracy. The uncertain parentage model was used to add pedigree relationships for alternative parents when pedigree relationships were not certain. The uncertain parentage model included 2 possible sires (dams) when the sire (dam) could not be confirmed with genotypes. The 2 sires (dams) were the sire (dam) on record with probability 0.90 (0.95) and the unknown parent group for the birth year of the sire (dam) with probability 0.10 (0.05). An additional set of assumptions was tested in simulation to mimic an extensive dairy production system by using a sire probability of 0.75, a dam probability of 0.85, and the remainder attributed to the unknown parent groups. In the simulation, small bias differences occurred between models based on pedigree accuracy and genotype status. Rank correlations were strong between traditional and uncertain parentage models in simulation (≥0.99) and in Holstein (≥0.99). For Holsteins, the estimated breeding value differences between models were small for most animals. Thus, traditional models can continue to be used for dairy genomic prediction despite using genotypes to improve pedigree accuracy. Those genotypes can also be used to discover maternal parentage, specifically maternal grandsires and great grandsires when the dam is not known. More research is needed to understand how to use discovered maternal pedigrees in genetic prediction.


Asunto(s)
Cruzamiento , Genoma , Linaje , Animales , Bovinos , Industria Lechera , Genómica , Modelos Genéticos , Estados Unidos
17.
J Appl Microbiol ; 126(2): 633-640, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30353941

RESUMEN

AIM: The purpose of this study was to clarify the mechanism of the antibacterial action of two high potential and natural food additives, epigallocatechin gallate (EGCg) and theaflavin-3,3'-digallate (TF3), on Clostridium perfringens. METHODS AND RESULTS: Minimal inhibitory concentrations were determined by the serial dilution method. Afterwards, the cells were treated with 250 or 1000 mg l-1 of EGCg and 125 or 500 mg l-1 of TF3 and morphological changes were observed and cell sizes were also measured under fluorescence microscopy. Our results showed that TF3 had a twice stronger antibacterial activity than EGCg against C. perfringens. Phase-contrast and fluorescence microscopy confirmed that the bacterial cells elongated without DNA segregation and septum formation in the presence of 250 mg l-1 EGCg. While in the higher concentration of EGCg and TF3, cell growth was suppressed. Bacterial cells reached to around 12 µm after the 24 h incubation with 250 mg l-1 EGCg, but the cells were shorter than the control at 1000 mg l-1 of EGCg. After washing and incubating the elongated cells in fresh medium, DNA segregated at 2 h of incubation. The average cell length decreased gradually and reached the normal size at 8 h. CONCLUSION: It seems that EGCg at a low concentration affected the proteins involved in the septum formation, DNA segregation and cell division. Furthermore, the high concentration of EGCg and TF3 seemed to cause stronger cellular damage to C. perfringens. SIGNIFICANCE AND IMPACT OF THE STUDY: These polyphenols are widely distributed in all higher plants especially in tea plants, and people tend to use natural food additives rather than synthetic ones. EGCg and TF3, as natural food additives, can prevent C. perfringens food poisoning along with other potential health benefits.


Asunto(s)
Antibacterianos/farmacología , Biflavonoides/farmacología , Catequina/análogos & derivados , Clostridium perfringens/efectos de los fármacos , Catequina/farmacología
19.
J Dairy Sci ; 101(6): 5194-5206, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29573806

RESUMEN

The objective of this study was to compare genetic trends from single-step genomic BLUP (ssGBLUP) and traditional BLUP models for milk production traits of US Holsteins. Phenotypes were 305-d milk, fat, and protein yields from 21,527,040 cows recorded between January 1990 and August 2015. The pedigree file included 29,651,623 animals and was limited to 3 generations back from recorded or genotyped animals. Genotypes for 764,029 animals were used, and analyses were by a 3-trait repeatability model as used in the US official genetic evaluation. Unknown-parent groups were incorporated into the inverse of a relationship matrix (H-1 in ssGBLUP and A-1 in BLUP) with the QP transformation. For ssGBLUP, 18,359 genotyped animals were randomly chosen as core animals to calculate the inverse of the genomic relationship matrix with the APY algorithm. Computations took 6.5 h and 1.4 GB of memory for BLUP, and 13 h and 115 GB of memory for ssGBLUP. For genotyped sires with at least 10 daughters, the average genetic levels for predicted transmitting ability (PTA) and genomic PTA were similar up to 2008, with a higher level for ssGBLUP later (approximately by 36 kg for milk, 2.1 kg for fat, and 1.1 kg for protein for bulls born in 2010). For genotyped cows, the average genetic levels were similar up to 2006, with a higher level for ssGBLUP (approximately by 91 kg for milk, 3.6 kg for fat, and 2.7 kg for protein for cows born in 2012). For all cows, the average levels were slightly higher for ssGBLUP, with much smaller differences than for genotyped cows. Trends for BLUP indicate bias due to genomic preselection for genotyped sires and cows. For official evaluations released in December 2016, traditional PTA had the same trend as multiple-step genomic PTA for both genotyped bulls and cows except for the youngest bulls, who had traditional PTA slightly lower than genomic PTA. For genotyped bulls born in recent years, genetic gain for official traditional and genomic evaluations was similar in contrast to ssGBLUP and BLUP differences. Official PTA for cows were adjusted so that the Mendelian sampling variance was comparable with that for bulls, and those adjustments likely removed bias due to genomic preselection from traditional PTA, especially for genotyped cows. The ssGBLUP method seems to account partially for that bias and is computationally suitable for national evaluations.


Asunto(s)
Cruzamiento , Bovinos/genética , Lactancia/genética , Modelos Genéticos , Animales , Femenino , Genoma , Genómica , Genotipo , Masculino , Linaje , Fenotipo , Embarazo
20.
J Fish Biol ; 92(5): 1342-1358, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29537077

RESUMEN

This study clarifies the location, size and age at the onset of metamorphosis in Japanese eels Anguilla japonica through oceanic surveys, rearing experiments and analyses of the morphology and otoliths of leptocephali and glass eels. Twenty-eight metamorphosing leptocephali were collected in the mesoscale eddy region to the east of Taiwan during research expeditions in 2004. Rearing experiments showed that the total length (LT ) of leptocephali decreased by an average of 12·5% during metamorphosis and 13·9% during the 2-12 h after death. Thus, the mean back-calculated LT at the onset of metamorphosis for 630 glass eels from Taiwan and Japan was estimated at 67·8 ± 2·7 mm (mean ± S.D.). The estimated mean ante-mortem size of the fully grown pre-metamorphic leptocephali collected in 2004 was 64·6 ± 3·4 mm, which was consistent with the LT estimate for glass eels. Otolith analysis showed that the mean age at the onset of metamorphosis was 137 ± 15 days and indicated that Japanese eels may have a recruitment route through the mesoscale eddies to the east of Taiwan in addition to the direct transfer route from the North Equatorial Current to the Kuroshio Current.


Asunto(s)
Anguilla/crecimiento & desarrollo , Metamorfosis Biológica , Determinación de la Edad por el Esqueleto , Factores de Edad , Animales , Tamaño Corporal , Japón , Océano Pacífico , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...