Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Oncol ; : 1-14, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864611

RESUMEN

Aim: To describe patient and treatment characteristics associated with bevacizumab BS-Pfizer, rituximab BS-Pfizer and trastuzumab BS-Pfizer and their reference products in Japan. Methods: This retrospective observational study used an administrative claims database to identify patients with ≥1 biosimilar or reference product prescription from 2019 to 2022 for approved indications. Descriptive statistics were calculated. Results: Overall, 14-39% of biosimilar-prescribed patients initiated therapy with reference products. Biosimilar utilization significantly increased from 2019 to 2022. The most-commonly prescribed concomitant class of therapy with biosimilars was antineoplastic therapy. Conclusion: Reference products were most frequently prescribed among the Japanese cohorts, but substantial and increasing proportions received biosimilars over time. Future studies should extend our initial insights to assess biosimilar clinical outcomes in Japanese settings.


This study examines the adoption of cancer biosimilar therapies in Japan from 2019 to 2022. Cancer biosimilars are complex treatments that closely resemble established cancer therapies already available in Japan. We looked into the characteristics of patients receiving three specific biosimilars ­ bevacizumab BS-Pfizer, rituximab BS-Pfizer and trastuzumab BS-Pfizer. We also investigated where patients received biosimilar treatment, other therapies they received alongside biosimilars and the proportion of patients using these therapies each year during the study. Our analysis utilized data from the 'Medical Data Vision' database, which records care provided in hospitals across Japan. We analyzed patient demographics and treatment patterns, and compared different groups using statistics to identify significant differences. Notably, we observed that between 14 and 39% of patients initially started treatment with the original version of the drug on the market, known as the 'reference product,' before switching to the biosimilar. Furthermore, our findings revealed a significant increase in the use of biosimilars each year during the study period. Biosimilars were most-commonly used alongside chemotherapy drugs. These initial findings shed light on the patient population using cancer biosimilars in Japan and the treatment contexts in which they are utilized. Future research should delve deeper into aspects such as cost of care, patient survival, side effects and other pertinent factors related to the use of biosimilars in cancer care in Japan.

2.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682330

RESUMEN

BACKGROUND: Drug-induced QT prolongation (diLQT) is a feared side effect that could expose susceptible individuals to fatal arrhythmias. The occurrence of diLQT is primarily attributed to unintended drug interactions with cardiac ion channels, notably the hERG (human ether-a-go-go-related gene) channels that generate the delayed-rectifier potassium current (IKr) and thereby regulate the late repolarization phase. There is an important interindividual susceptibility to develop diLQT, which is of unknown origin but can be reproduced in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We aimed to investigate the dynamics of hERG channels in response to sotalol and to identify regulators of the susceptibility to developing diLQT. METHODS: We measured electrophysiological activity and cellular distribution of hERG channels after hERG blocker treatment in iPS-CMs derived from patients with highest sensitivity (HS) or lowest sensitivity (LS) to sotalol administration in vivo (ie, on the basis of the measure of the maximal change in QT interval 3 hours after administration). Specific small interfering RNAs and CAVIN1-T2A-GFP adenovirus were used to manipulate CAVIN1 expression. RESULTS: Whereas HS and LS iPS-CMs showed similar electrophysiological characteristics at baseline, the late repolarization phase was prolonged and IKr significantly decreased after exposure of HS iPS-CMs to low sotalol concentrations. IKr reduction was caused by a rapid translocation of hERG channel from the membrane to the cytoskeleton-associated fractions upon sotalol application. CAVIN1, essential for caveolae biogenesis, was 2× more highly expressed in HS iPS-CMs, and its knockdown by small interfering RNA reduced their sensitivity to sotalol. CAVIN1 overexpression in LS iPS-CMs using adenovirus showed reciprocal effects. We found that treatment with sotalol promoted translocation of the hERG channel from the plasma membrane to the cytoskeleton fractions in a process dependent on CAVIN1 (caveolae associated protein 1) expression. CAVIN1 silencing reduced the number of caveolae at the membrane and abrogated the translocation of hERG channel in sotalol-treated HS iPS-CMs. CAVIN1 also controlled cardiomyocyte responses to other hERG blockers, such as E4031, vandetanib, and clarithromycin. CONCLUSIONS: Our study identifies unbridled turnover of the potassium channel hERG as a mechanism supporting the interindividual susceptibility underlying diLQT development and demonstrates how this phenomenon is finely tuned by CAVIN1.

3.
Circulation ; 147(6): 498-511, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36484260

RESUMEN

BACKGROUND: Myocardial infarction (MI) induces a repair response that ultimately generates a stable fibrotic scar. Although the scar prevents cardiac rupture, an excessive profibrotic response impairs optimal recovery by promoting the development of noncontractile fibrotic areas. The mechanisms that lead to cardiac fibrosis are diverse and incompletely characterized. We explored whether the expansion of cardiac fibroblasts after MI can be regulated through a paracrine action of cardiac stromal cells. METHODS: We performed a bioinformatic secretome analysis of cardiac stromal PW1+ cells isolated from normal and post-MI mouse hearts to identify novel secreted proteins. Functional assays were used to screen secreted proteins that promote fibroblast proliferation. The expressions of candidates were subsequently analyzed in mouse and human hearts and plasmas. The relationship between levels of circulating protein candidates and adverse post-MI cardiac remodeling was examined in a cohort of 80 patients with a first ST-segment-elevation MI and serial cardiac magnetic resonance imaging evaluations. RESULTS: Cardiac stromal PW1+ cells undergo a change in paracrine behavior after MI, and the conditioned media from these cells induced a significant increase in the proliferation of fibroblasts. We identified a total of 12 candidates as secreted proteins overexpressed by cardiac PW1+ cells after MI. Among these factors, GDF3 (growth differentiation factor 3), a member of the TGF-ß (transforming growth factor-ß) family, was markedly upregulated in the ischemic hearts. Conditioned media specifically enriched with GDF3 induced fibroblast proliferation at a high level by stimulation of activin-receptor-like kinases. In line with the secretory nature of this protein, we next found that GDF3 can be detected in mice and human plasma samples, with a significant increase in the days after MI. In humans, higher GDF3 circulating levels (measured in the plasma at day 4 after MI) were significantly associated with an increased risk of adverse remodeling 6 months after MI (adjusted odds ratio, 1.76 [1.03-3.00]; P=0.037), including lower left ventricular ejection fraction and a higher proportion of akinetic segments. CONCLUSIONS: Our findings define a mechanism for the profibrotic action of cardiac stromal cells through secreted cardiokines, such as GDF3, a candidate marker of adverse fibrotic remodeling after MI. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01113268.


Asunto(s)
Infarto del Miocardio , Miocardio , Animales , Humanos , Ratones , Cicatriz/patología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Factor 3 de Diferenciación de Crecimiento/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular
4.
Eur J Haematol ; 109(4): 388-397, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35775385

RESUMEN

OBJECTIVES: This non-interventional observational study described the current standard-of-care for transplant-eligible newly diagnosed multiple myeloma (TE-NDMM) patients in France, Germany, Spain, and Italy, and recorded the evolution in regimen adoption in distinct elements of frontline treatment during 2017-2020/2021. METHODS: Clinical information on ongoing (I) or previous (II) TE-NDMM patients was extracted from the Cancerology database. Proportions of patients receiving regimens in each element and the evolution in regimen adoption were determined for the entire population and each country. RESULTS: Most common induction regimens among I patients were VRd in France (75.3%) and Spain (44.1%), VTd in Italy (65.2%), and regimens other than VRd/VTd/VCd in Germany. Maintenance was ongoing/planned for 78.3%, 62.3%, 65.2%, and 61.4% patients in France, Germany, Spain, and Italy, respectively. Among II patients, VRd induction increased from 27.0% in 2017 to 65.7% in 2019 in France, remained relatively low in Spain and Germany, and not present in Italy. In Italy and Spain, VTd induction declined from 72.4% and 58.3% in 2017 to 52.8% and 17.3% in 2019, respectively. VCd induction in Germany declined from 85.2% in 2017 to 64.1% in 2019. CONCLUSION: The use of bortezomib triplets in induction varied markedly over time and between selected countries.


Asunto(s)
Mieloma Múltiple , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bortezomib/uso terapéutico , Dexametasona/uso terapéutico , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/epidemiología , Mieloma Múltiple/terapia , España/epidemiología
5.
ACS Nano ; 16(7): 10292-10301, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35653306

RESUMEN

Bioorthogonal catalysis (BC) generates chemical reactions not present in normal physiology for the purpose of disease treatment. Because BC catalytically produces the desired therapy only at the site of disease, it holds the promise of site-specific treatment with little or no systemic exposure or side effects. Transition metals are typically used as catalytic centers in BC; however, solubility and substrate specificity typically necessitate a coordinating enzyme and/or stabilizing superstructure for in vivo application. We report the use of self-assembling, porous exoshells (tESs) to encapsulate and deliver an iron-containing reaction center for the treatment of breast cancer. The catalytic center is paired with indole-3-acetic acid (IAA), a natural product found in edible plants, which undergoes oxidative decarboxylation, via reduction of iron(III) to iron(II), to produce free radicals and bioactive metabolites. The tES encapsulation is critical for endocytic uptake of BC reaction centers and, when followed by administration of IAA, results in apoptosis of MDA-MB-231 triple negative cancer cells and complete regression of in vivo orthotopic xenograft tumors (p < 0.001, n = 8 per group). When Renilla luciferase (rLuc) is substituted for horseradish peroxidase (HRP), whole animal luminometry can be used to monitor in vivo activity.


Asunto(s)
Productos Biológicos , Nanopartículas , Neoplasias , Animales , Humanos , Compuestos Férricos , Peroxidasa de Rábano Silvestre/metabolismo , Catálisis , Hierro
6.
J Clin Med ; 10(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34640638

RESUMEN

We aimed to compare the influence of cardiometabolic disorders on the incidence of severe COVID-19 vs. non-COVID pneumonia. We included all consecutive patients admitted with SARS-CoV-2-positive pneumonia between 12 March 2020 and 1 April 2020 and compared them to patients with influenza pneumonia hospitalized between December 2017 and December 2019 at the same tertiary hospital in Paris. Patients with COVID-19 were significantly younger and more frequently male. In the analysis adjusted for age and sex, patients with COVID-19 were more likely to be obese (adjOR: 2.25; 95% CI 1.24-4.09; p = 0.0076) and receive diuretics (adjOR: 2.13; 95% CI 1.12-4.03; p = 0.021) but were less likely to be smokers (adjOR: 0.40; 95% CI 0.24-0.64; p = 0.0002), have COPD (adjOR: 0.25; 95% CI 0.11-0.56; p = 0.0008), or have a previous or active cancer diagnosis (adjOR: 0.54, 95% CI 0.32-0.91; p = 0.020). The rate of ICU admission was significantly higher in patients with COVID-19 (32.4% vs. 5.2% p < 0.0001). Obesity was significantly associated with the risk of direct ICU admission in patients with COVID-19 but not in patients with influenza pneumonia. Likewise, pre-existing hypertension was significantly associated with mortality in patients with COVID-19 but not in patients with influenza pneumonia. Cardiometabolic disorders differentially influenced the risk of presenting with severe COVID-19 or influenza pneumonia.

7.
Sci Rep ; 10(1): 11404, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647159

RESUMEN

There is currently no therapy to limit the development of cardiac fibrosis and consequent heart failure. We have recently shown that cardiac fibrosis post-myocardial infarction (MI) can be regulated by resident cardiac cells with a fibrogenic signature and identified by the expression of PW1 (Peg3). Here we identify αV-integrin (CD51) as an essential regulator of cardiac PW1+ cells fibrogenic behavior. We used transcriptomic and proteomic approaches to identify specific cell-surface markers for cardiac PW1+ cells and found that αV-integrin (CD51) was expressed in almost all cardiac PW1+ cells (93% ± 1%), predominantly as the αVß1 complex. αV-integrin is a subunit member of the integrin family of cell adhesion receptors and was found to activate complex of latent transforming growth factor beta (TGFß at the surface of cardiac PW1+ cells. Pharmacological inhibition of αV-integrin reduced the profibrotic action of cardiac PW1+CD51+ cells and was associated with improved cardiac function and animal survival following MI coupled with a reduced infarct size and fibrotic lesion. These data identify a targetable pathway that regulates cardiac fibrosis in response to an ischemic injury and demonstrate that pharmacological inhibition of αV-integrin could reduce pathological outcomes following cardiac ischemia.


Asunto(s)
Integrina alfaV/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Venenos de Serpiente/uso terapéutico , Células del Estroma/efectos de los fármacos , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Fibrosis , Integrina alfaV/fisiología , Factores de Transcripción de Tipo Kruppel/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , ARN Mensajero/biosíntesis , Análisis de la Célula Individual , Venenos de Serpiente/farmacología , Células del Estroma/química , Factor de Crecimiento Transformador beta1/farmacología
9.
Nanomedicine ; 18: 169-178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30853651

RESUMEN

Mammalian cell membranes are often incompatible with chemical modifications typically used to increase circulation half-life. Using cellular nanoghosts as a model, we show that proline-alanine-serine (PAS) peptide sequences expressed on the membrane surface can extend the circulation time of a cell membrane derived nanotherapeutic. Membrane expression of a PAS 40 repeat sequence decreased protein binding and resulted in a 90% decrease in macrophage uptake when compared with non-PASylated controls (P ≤ 0.05). PASylation also extended circulation half-life (t1/2 = 37 h) compared with non-PASylated controls (t1/2 = 10.5 h) (P ≤ 0.005), resulting in ~7-fold higher in vivo serum concentrations at 24 h and 48 h (P ≤ 0.005). Genetically engineered membrane expression of PAS repeats may offer an alternative to PEGylation and provide extended circulation times for cellular membrane-derived nanotherapeutics.


Asunto(s)
Membrana Celular/metabolismo , Nanopartículas/uso terapéutico , Ingeniería de Proteínas , Adsorción , Animales , Proteínas Sanguíneas/metabolismo , Dispersión Dinámica de Luz , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/ultraestructura , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Propiedades de Superficie , Distribución Tisular
10.
Front Immunol ; 9: 1208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29915581

RESUMEN

The immune system is highly dynamic and regulated by many baseline characteristic factors. As such, significant variability may exist among different patient groups suffering from the same autoimmune disease (AD). However, contemporary research practices tend to take the reductionist aggregate approach: they do not segment AD patients before embarking on biomarker discovery. This approach has been productive: many novel AD biomarkers have recently been discovered. Yet, subsequent validation studies of these biomarkers tend to suffer from a lack of specificity, sensitivity, and reproducibility which hamper their translation for clinical use. To enhance reproducibility in validation studies, an optimal discovery-phase study design is paramount: one which takes into account different parameters affecting the immune system biology. In this systematic review, we highlight need for stratification in one such parameter, i.e., sex stratification. We will first explore sex differences in immune system biology and AD prevalence, followed by reported sex-bias in the clinical phenotypes of two ADs-one which more commonly affects females: systemic lupus erythematosus, and one which more commonly affects males: ankylosing spondylitis. The practice of sex stratification in biomarker research may not only advance the discovery of sex-specific AD biomarkers but more importantly, promote reproducibility in subsequent validation studies, thus easing the translation of these novel biomarkers from bench to bedside to improve AD diagnosis. In addition, such practice will also promote deeper understanding for differential AD pathophysiology in males and females, which will be useful for the development of more effective interventions for each sex type.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Biomarcadores , Investigación , Animales , Enfermedades Autoinmunes/diagnóstico , Autoinmunidad , Femenino , Humanos , Inmunidad , Masculino , Fenotipo , Caracteres Sexuales , Factores Sexuales
11.
Nat Commun ; 8(1): 1442, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129910

RESUMEN

The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis.


Asunto(s)
Archaeoglobus fulgidus/genética , Escherichia coli/genética , Proteínas Fluorescentes Verdes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Luciferasas de Renilla/metabolismo , Proteínas Recombinantes/biosíntesis , Archaeoglobus fulgidus/metabolismo , Escherichia coli/metabolismo , Expresión Génica/fisiología , Nanopartículas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...