Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 7(2): 293-301, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11233986

RESUMEN

Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , ARN Ribosómico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Emparejamiento Base , Secuencia de Bases , Supervivencia Celular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Mutación , Plásmidos , ARN Bacteriano , ARN Ribosómico/genética , Receptores Citoplasmáticos y Nucleares/genética , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
2.
Mol Cell ; 6(2): 501-5, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10983996

RESUMEN

Elongation factor G (EF-G) from Escherichia coli is a large, five-domain GTPase that promotes tRNA translocation on the ribosome. Full activity requires GTP hydrolysis, suggesting that a conformational change of the factor is important for function. To restrict the intramolecular mobility, two cysteine residues were engineered into domains 1 and 5 of EF-G that spontaneously formed a disulfide cross-link. Cross-linked EF-G retained GTPase activity on the ribosome, whereas it was inactive in translocation as well as in turnover. Both activities were restored when the cross-link was reversed by reduction. These results strongly argue against a GTPase switch-type model of EF-G function and demonstrate that conformational mobility is an absolute requirement for EF-G function on the ribosome.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Sustitución de Aminoácidos , Reactivos de Enlaces Cruzados , Cisteína , Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Thermus thermophilus/metabolismo
3.
Biol Chem ; 381(5-6): 377-87, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10937868

RESUMEN

The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu x GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
4.
J Mol Biol ; 300(4): 951-61, 2000 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-10891280

RESUMEN

Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P(i) release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the alpha-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the alpha-sarcin stem-loop is required for EF-G release from the ribosome.


Asunto(s)
Escherichia coli/química , Proteínas Fúngicas , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Sustitución de Aminoácidos/genética , Sitios de Unión , Catálisis , Secuencia Conservada , Cristalografía por Rayos X , Endorribonucleasas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Estructura Terciaria de Proteína , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/química , Ribosomas/genética , Eliminación de Secuencia/genética , Ésteres del Ácido Sulfúrico/metabolismo
5.
Proc Natl Acad Sci U S A ; 96(17): 9586-90, 1999 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-10449736

RESUMEN

The region around position 1067 in domain II of 23S rRNA frequently is referred to as the GTPase center of the ribosome. The notion is based on the observation that the binding of the antibiotic thiostrepton to this region inhibited GTP hydrolysis by elongation factor G (EF-G) on the ribosome at the conditions of multiple turnover. In the present work, we have reanalyzed the mechanism of action of thiostrepton. Results obtained by biochemical and fast kinetic techniques show that thiostrepton binding to the ribosome does not interfere with factor binding or with single-round GTP hydrolysis. Rather, the antibiotic inhibits the function of EF-G in subsequent steps, including release of inorganic phosphate from EF-G after GTP hydrolysis, tRNA translocation, and the dissociation of the factor from the ribosome, thereby inhibiting the turnover reaction. Structurally, thiostrepton interferes with EF-G footprints in the alpha-sarcin stem loop (A2660, A2662) located in domain VI of 23S rRNA. The results indicate that thiostrepton inhibits a structural transition of the 1067 region of 23S rRNA that is important for functions of EF-G after GTP hydrolysis.


Asunto(s)
Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Tioestreptona/farmacología , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato , Cinética , Factor G de Elongación Peptídica , Fosfatos/metabolismo , ARN Ribosómico 23S/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Translocación Genética
6.
RNA ; 5(7): 939-46, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10411137

RESUMEN

Oxazolidinones are antibacterial agents that act primarily against gram-positive bacteria by inhibiting protein synthesis. The binding of oxazolidinones to 70S ribosomes from Escherichia coli was studied by both UV-induced cross-linking using an azido derivative of oxazolidinone and chemical footprinting using dimethyl sulphate. Oxazolidinone binding sites were found on both 30S and 50S subunits, rRNA being the only target. On 16S rRNA, an oxazolidinone footprint was found at A864 in the central domain. 23S rRNA residues involved in oxazolidinone binding were U2113, A2114, U2118, A2119, and C2153, all in domain V. This region is close to the binding site of protein L1 and of the 3' end of tRNA in the E site. The mechanism of action of oxazolidinones in vitro was examined in a purified translation system from E. coli using natural mRNA. The rate of elongation reaction of translation was decreased, most probably because of an inhibition of tRNA translocation, and the length of nascent peptide chains was strongly reduced. Both binding sites and mode of action of oxazolidinones are unique among the antibiotics known to act on the ribosome.


Asunto(s)
Oxazoles/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Secuencia de Bases , Sitios de Unión , Reactivos de Enlaces Cruzados , Huella de ADN , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oxazoles/química , ARN Ribosómico/química
7.
Biochim Biophys Acta ; 1397(2): 231-9, 1998 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-9565692

RESUMEN

mRNA analogs, 4-(N-2-chloroethyl-N-methylamino)benzylmethyl-[5'-32P]-phosphamide derivatives of oligoribonucleotides pAUGUn (n=0, 3 or 6), were used for affinity labelling of human 80S ribosomes in complexes with codon-anticodon interaction at the P-site. These complexes were obtained in the presence of fractionated lysate from rabbit reticulocytes deprived of endogenous ribosomes and mRNAs. In all cases, 40S subunits were labelled preferentially. Within the subunits, both ribosomal proteins and 18S rRNA were modified. Ribosomal proteins cross-linked to pAUGUn derivatives were identified earlier. In this paper, nucleotides G-1010, G-1029, G-1033, G-1051, G-1054 and G-1059 of 18S rRNA cross-linked to both pAUG and pAUGU3 derivatives were identified by reverse transcription analysis.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico 18S/química , Ribosomas/metabolismo , Marcadores de Afinidad , Reactivos de Enlaces Cruzados , Humanos , Conformación de Ácido Nucleico , Oligonucleótidos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...