Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 597(7876): 370-375, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526706

RESUMEN

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Fitoplancton/crecimiento & desarrollo , Fitoplancton/aislamiento & purificación , Incendios Forestales/estadística & datos numéricos , Aerosoles/análisis , Aerosoles/química , Atmósfera/química , Australia , Clorofila A/análisis , Imágenes Satelitales , Estaciones del Año , Hollín/análisis
2.
Nat Commun ; 12(1): 4346, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272363

RESUMEN

Assessments of climate forecast skill depend on choices made by the assessor. In this perspective, we use forecasts of the El Niño-Southern-Oscillation to outline the impact of bias-correction on skill. Many assessments of skill from hindcasts (past forecasts) are probably overestimates of attainable forecast skill because the hindcasts are informed by observations over the period assessed that would not be available to real forecasts. Differences between hindcast and forecast skill result from changes in model biases from the period used to form forecast anomalies to the period over which the forecast is made. The relative skill rankings of models can change between hindcast and forecast systems because different models have different changes in bias across periods.

3.
Nat Commun ; 11(1): 4352, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859903

RESUMEN

Global climate models project the intensification of marine heatwaves in coming decades due to global warming. However, the spatial resolution of these models is inadequate to resolve mesoscale processes that dominate variability in boundary current regions where societal and economic impacts of marine heatwaves are substantial. Here we compare the historical and projected changes in marine heatwaves in a 0.1° ocean model with 23 coarser-resolution climate models. Western boundary currents are the regions where the models disagree the most with observations and among themselves in simulating marine heatwaves of the past and the future. The lack of eddy-driven variability in the coarse-resolution models results in less intense marine heatwaves over the historical period and greater intensification in the coming decades. Although the projected changes agree well at the global scale, the greater spatial details around western boundary currents provided by the high-resolution model may be valuable for effective adaptation planning.

4.
Glob Chang Biol ; 26(9): 4800-4811, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32585056

RESUMEN

Ocean temperature extreme events such as marine heatwaves are expected to intensify in coming decades due to anthropogenic global warming. Reported ecological and economic impacts of marine heatwaves include coral bleaching, local extinction of mangrove and kelp forests and elevated mortalities of invertebrates, fishes, seabirds and marine mammals. In contrast, little is known about the impacts of marine heatwaves on microbes that regulate biogeochemical processes in the ocean. Here we analyse the daily output of a near-global ocean physical-biogeochemical model simulation to characterize the impacts of marine heatwaves on phytoplankton blooms in 23 tropical and temperate oceanographic regions from 1992 to 2014. The results reveal regionally coherent anomalies of shallower surface mixing layers and lower surface nitrate concentrations during marine heatwaves. These anomalies exert counteracting effects on phytoplankton growth through light and nutrient limitation. Consequently, the responses of phytoplankton blooms are mixed, but can be related to the background nutrient conditions of the study regions. The blooms are weaker during marine heatwaves in nutrient-poor waters, whereas in nutrient-rich waters, the heatwave blooms are stronger. The corresponding analyses of sea-surface temperature, chlorophyll a and nitrate based on satellite observations and in situ climatology support this relationship between phytoplankton bloom anomalies and background nitrate concentration. Given that nutrient-poor waters are projected to expand globally in the 21st century, this study suggests increased occurrence of weaker blooms during marine heatwaves in coming decades, with implications for higher trophic levels and biogeochemical cycling of key elements.


Asunto(s)
Antozoos , Fitoplancton , Animales , Clorofila A , Nutrientes , Temperatura
5.
Nat Commun ; 10(1): 4611, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601810

RESUMEN

Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most 10 ppm to this mechanism, leaving ~20 ppm unexplained. We show that an Fe-induced stimulation of dinitrogen (N2) fixation can induce a low latitude drawdown of 7-16 ppm CO2. This mechanism involves a closer coupling between N2 fixers and denitrifiers that alleviates widespread nitrate limitation. Consequently, phosphate utilisation and carbon export increase near upwelling zones, causing deoxygenation and deeper carbon injection. Furthermore, this low latitude mechanism reproduces the regional patterns of organic δ15N deposited in glacial sediments. The positive response of marine N2 fixation to dusty ice age conditions, first proposed twenty years ago, therefore compliments high latitude changes to amplify CO2 drawdown.

6.
Glob Chang Biol ; 25(4): 1263-1281, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30807685

RESUMEN

Historical harvesting pushed many whale species to the brink of extinction. Although most Southern Hemisphere populations are slowly recovering, the influence of future climate change on their recovery remains unknown. We investigate the impacts of two anthropogenic pressures-historical commercial whaling and future climate change-on populations of baleen whales (blue, fin, humpback, Antarctic minke, southern right) and their prey (krill and copepods) in the Southern Ocean. We use a climate-biological coupled "Model of Intermediate Complexity for Ecosystem Assessments" (MICE) that links krill and whale population dynamics with climate change drivers, including changes in ocean temperature, primary productivity and sea ice. Models predict negative future impacts of climate change on krill and all whale species, although the magnitude of impacts on whales differs among populations. Despite initial recovery from historical whaling, models predict concerning declines under climate change, even local extinctions by 2100, for Pacific populations of blue, fin and southern right whales, and Atlantic/Indian fin and humpback whales. Predicted declines were a consequence of reduced prey (copepods/krill) from warming and increasing interspecific competition between whale species. We model whale population recovery under an alternative scenario whereby whales adapt their migratory patterns to accommodate changing sea ice in the Antarctic and a shifting prey base. Plasticity in range size and migration was predicted to improve recovery for ice-associated blue and minke whales. Our study highlights the need for ongoing protection to help depleted whale populations recover, as well as local management to ensure the krill prey base remains viable, but this may have limited success without immediate action to reduce emissions.

7.
Sci Adv ; 2(5): e1600282, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386549

RESUMEN

Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.


Asunto(s)
Ciclo del Carbono , Tormentas Ciclónicas , Estaciones del Año , Clima Tropical , Modelos Teóricos
8.
Nat Commun ; 7: 10732, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26907171

RESUMEN

The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.


Asunto(s)
Antozoos/metabolismo , Carbonato de Calcio/metabolismo , Arrecifes de Coral , Agua de Mar/química , Animales , Hidrodinámica , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Químicos , Océanos y Mares
9.
Nat Commun ; 6: 8656, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26486973

RESUMEN

While the Northern Hemisphere sea-ice has uniformly declined over the past several decades, the observed sea-ice in the Southern Hemisphere has exhibited regions of increase and decrease. Here we use a comprehensive set of ocean-sea-ice simulations (1990-2007) to elucidate the drivers of the observed heterogeneous sea-ice trends. We show wind variability is an important determinant of the heterogeneous pattern of the variability and trends in Southern Hemisphere sea-ice. Only in the West Pacific region does Southern Annular Mode wind forcing contribute significantly to the trend in sea-ice duration. El Niño Southern Oscillation wind forcing contribution to the sea-ice duration trend is confined to the Atlantic and Pacific. In the Indian Ocean, weather is a significant driver of the sea-ice duration trend. Only in the East Pacific region is wind forcing alone insufficient to give rise to the observed sea-ice decline and must be augmented by warming to reproduce the observations.

10.
Glob Chang Biol ; 19(5): 1632-41, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23505026

RESUMEN

Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2 ), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2 ) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long-term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 µatm, with corrosive conditions with respect to aragonite by end-century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2 ) by end-century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short-term exposure to these extreme CO2 conditions, coupled with elevated long-term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.


Asunto(s)
Ácidos/química , Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Cambio Climático , Agua de Mar/química , Arrecifes de Coral , Modelos Teóricos , Océanos y Mares , Queensland
11.
J Phycol ; 49(4): 670-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27007199

RESUMEN

Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose-bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non-calcifying strains showed strong CCM activity, with HCO3 (-) as a preferred source of photosynthetic carbon in the non-calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco-lithophorids will be able to down-regulate their CCMs, and re-direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non-calcifying strain, on the other hand, will experience only a 10% increase in HCO3 (-) , thus making it less responsive to changes in carbonate chemistry of water.

12.
Science ; 336(6080): 455-8, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539717

RESUMEN

Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

13.
Proc Natl Acad Sci U S A ; 105(48): 18860-4, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19022908

RESUMEN

Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.


Asunto(s)
Atmósfera , Dióxido de Carbono/análisis , Carbonatos/análisis , Concentración de Iones de Hidrógeno , Agua de Mar/química , Regiones Antárticas , Carbonato de Calcio/análisis , Ecosistema , Humanos , Océanos y Mares , Plancton/metabolismo , Estaciones del Año
14.
Science ; 319(5863): 570; author reply 570, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18239108

RESUMEN

Unlike Le Quéré et al. (Reports, 22 June 2007, p. 1735), we do not find a saturating Southern Ocean carbon sink due to recent climate change. In our ocean model, observed wind forcing causes reduced carbon uptake, but heat and freshwater flux forcing cause increased uptake. Our inversions of atmospheric carbon dioxide show that the Southern Ocean sink trend is dependent on network choice.

15.
Science ; 314(5799): 595, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-17068245

RESUMEN

Based on the boron isotopic composition of coral from the southwestern Pacific, Pelejero et al. (Reports, 30 September 2005, p. 2204) suggested that natural variations in pH can modulate the impact of ocean acidification on coral reef ecosystems. We show that this claim cannot be reconciled with other marine carbon chemistry constraints and highlight problems with the authors' interpretation of the paleontologic data.


Asunto(s)
Antozoos , Ecosistema , Agua de Mar , Animales , Antozoos/química , Antozoos/fisiología , Atmósfera , Boro , Dióxido de Carbono/análisis , Concentración de Iones de Hidrógeno , Isótopos , Océano Pacífico
16.
Carbon Balance Manag ; 1: 2, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16930458

RESUMEN

BACKGROUND: Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean. However, a recent study showed that climate change affected the decrease in pH insignificantly. Here, we examine the sensitivity of future oceanic acidification to climate change feedbacks within a coupled atmosphere-ocean model and find that ocean warming dominates the climate change feedbacks. RESULTS: Our results show that the direct decrease in pH due to ocean warming is approximately equal to but opposite in magnitude to the indirect increase in pH associated with ocean warming (ie reduced DIC concentration of the upper ocean caused by lower solubility of CO2). CONCLUSION: As climate change feedbacks on pH approximately cancel, future oceanic acidification will closely follow future atmospheric CO2 concentrations. This suggests the only way to slowdown or mitigate the potential biological consequences of future ocean acidification is to significantly reduce fossil-fuel emissions of CO2 to the atmosphere.

17.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16193043

RESUMEN

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Asunto(s)
Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Ecosistema , Agua de Mar/química , Ácidos/análisis , Animales , Antozoos/metabolismo , Atmósfera/química , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Océanos y Mares , Plancton/química , Plancton/metabolismo , Termodinámica , Factores de Tiempo , Incertidumbre
18.
Science ; 299(5604): 235-9, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12522246

RESUMEN

We estimated the oceanic inventory of anthropogenic carbon dioxide (CO2) from 1980 to 1999 using a technique based on the global chlorofluorocarbon data set. Our analysis suggests that the ocean stored 14.8 petagrams of anthropogenic carbon from mid-1980 to mid-1989 and 17.9 petagrams of carbon from mid-1990 to mid-1999, indicating an oceanwide net uptake of 1.6 and 2.0 +/- 0.4 petagrams of carbon per year, respectively. Our results provide an upper limit on the solubility-driven anthropogenic CO2 flux into the ocean, and they suggest that most ocean general circulation models are overestimating oceanic anthropogenic CO2 uptake over the past two decades.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...