Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32051278

RESUMEN

The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.


Asunto(s)
Arenavirus del Nuevo Mundo/inmunología , Virus Junin/inmunología , Virus Lassa/inmunología , Infecciones por Arenaviridae/virología , Arenavirus/genética , Arenavirus/inmunología , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Fiebre de Lassa/inmunología , Virus Lassa/metabolismo , Nucleoproteínas/metabolismo , ARN Bicatenario/inmunología , Replicación Viral , eIF-2 Quinasa/metabolismo
2.
mSphere ; 4(5)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554720

RESUMEN

Lassa virus (LASV), a member of the family Arenaviridae, is the causative agent of Lassa fever. Lassa virus is endemic in West African countries, such as Nigeria, Guinea, Liberia, and Sierra Leone, and causes outbreaks annually. Lassa fever onset begins with "flu-like" symptoms and may develop into lethal hemorrhagic disease in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few licensed vaccines or therapeutics against Lassa fever. The fact that animal models are limited and the fact that mostly laboratory-derived viruses are used for studies limit the successful development of countermeasures. In this study, we demonstrated that the LASV isolate LF2384-NS-DIA-1 (LF2384), which was directly isolated from a serum sample from a fatal human Lassa fever case in the 2012 Sierra Leone outbreak, causes uniformly lethal infection in outbred Hartley guinea pigs without virus-host adaptation. This is the first report of a clinically isolated strain of LASV causing lethal infection in outbred guinea pigs. This novel guinea pig model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics.IMPORTANCE Lassa virus, the causative agent of Lassa fever, is a zoonotic pathogen causing annual outbreaks in West African countries. Human patients can develop lethal hemorrhagic fever in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few available countermeasures, such as antiviral drugs or vaccines. Moreover, the fact that animal models are not readily accessible and the fact that mostly laboratory viruses, which have been passaged many times after isolation, are used for studies further limits the successful development of countermeasures. In this study, we demonstrate that a human isolate of Lassa virus causes lethal infection uniformly in Hartley guinea pigs. This novel animal model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Fiebre de Lassa/mortalidad , Fiebre de Lassa/veterinaria , Virus Lassa/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Cobayas , Humanos , Virus Lassa/aislamiento & purificación , Dosificación Letal Mediana , Carga Viral
3.
Vaccine ; 37(45): 6824-6831, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31561999

RESUMEN

Lassa virus (LASV), the causative agent of Lassa fever (LF), was first identified in 1969. Since then, outbreaks in the endemic countries of Nigeria, Liberia, and Sierra Leone occur on an annual basis resulting in a case-fatality rate of 15-70% in hospitalized patients. There is currently no licensed vaccine and there are limited animal models to test vaccine efficacy. An estimated 37.7 million people are at risk of contracting LASV; therefore, there is an urgent need for the development of a safe, effective vaccine against LASV infection. The LF endemic countries are also inflicted with HIV, Ebola, and malaria infections. The safety in immunocompromised populations must be considered in LASV vaccine development. The novel adenovirus vector-based platform, Ad5 (E1-,E2b-) has been used in clinical trial protocols for treatment of immunocompromised individuals, has been shown to exhibit high stability, low safety risk in humans, and induces a strong cell-mediated and pro-inflammatory immune response even in the presence of pre-existing adenovirus immunity. To this nature, our lab has developed an Ad5 (E1-,E2b-) vector-based vaccine expressing the LASV-NP or LASV-GPC. We found that guinea pigs vaccinated with two doses of Ad5 (E1-,E2b-) LASV-NP and Ad5 (E1-,E2b-) LASV-GPC were protected against lethal LASV challenge. The Ad5 (E1-,E2b-) LASV-NP and LASV-GPC vaccine represents a potential vaccine candidate against LF.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Vacunas Virales/uso terapéutico , Animales , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Femenino , Cobayas , Virus Lassa/inmunología , Virus Lassa/patogenicidad , Células Vero , Vacunas Virales/inmunología
4.
Front Public Health ; 6: 232, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30211144

RESUMEN

Lassa fever (LF) outbreaks in Nigeria mostly occur in rural areas and during the dry season, peaking between December through February. Fever is a cardinal presenting feature among the myriad manifestations of LF. Thirty four patients with clinical diagnosis of LF were analyzed. However, only 11 (32%) LASV infections were confirmed by RT-PCR. The 2016 LF outbreak showed a preferential urban occurrence and a high case fatality. Fever (≥38°C) was not detected in over a fourth of the patients at the time of examination. Bleeding diathesis was the most common presentation while abdominal pain and headache were present in more than half of the confirmed cases. Changes in the geographical distribution and clinical presentation may have implications for disease control efforts and the risk of transmission, both locally and internationally. In order to guide interventions, public health authorities should be aware that the epidemic patterns may be changing.

5.
Artículo en Inglés | MEDLINE | ID: mdl-30087859

RESUMEN

An important step in the initiation of the innate immune response to virus infection is the recognition of non-self, viral RNA, including double-stranded RNA (dsRNA), by cytoplasmic pattern recognition receptors (PRRs). For many positive-sense RNA viruses and DNA viruses, the production of viral dsRNA, and the interaction of viral dsRNA and PRRs are well characterized. However, for negative-sense RNA viruses, viral dsRNA was thought to be produced at low to undetectable levels and PRR recognition of viral dsRNA is still largely unclear. In the case of arenaviruses, the nucleocaspid protein (NP) has been identified to contain an exoribonuclease activity that preferentially degrades dsRNA in biochemical studies. Nevertheless, pathogenic New World (NW) arenavirus infections readily induce an interferon (IFN) response in a RIG-I dependent manner, and also activate the dsRNA-dependent Protein Kinase R (PKR). To better understand the innate immune response to pathogenic arenavirus infection, we used a newly identified dsRNA-specific antibody that efficiently detects viral dsRNA in negative-sense RNA virus infected cells. dsRNA was detected in NW arenavirus infected cells colocalizing with virus NP in immunofluorescence assay. Importantly, the dsRNA signals also colocalized with cytoplasmic PRRs, namely, PKR, RIG-I and MDA-5, as well as with the phosphorylated, activated form of PKR in infected cells. Our data clearly demonstrate the PRR recognition of dsRNA and their activation in NW arenavirus infected cells. These findings provide new insights into the interaction between NW arenaviruses and the host innate immune response.


Asunto(s)
Arenavirus/crecimiento & desarrollo , Células Epiteliales/inmunología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , ARN Bicatenario/análisis , ARN Viral/análisis , Receptores de Reconocimiento de Patrones/análisis , Células A549 , Proteína 58 DEAD Box/análisis , Humanos , Helicasa Inducida por Interferón IFIH1/análisis , Microscopía Confocal , Microscopía Fluorescente , Receptores Inmunológicos , eIF-2 Quinasa/análisis
6.
PLoS Negl Trop Dis ; 12(2): e0006187, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470486

RESUMEN

Although an association between Lassa fever (LF) and sudden-onset sensorineural hearing loss (SNHL) was confirmed clinically in 1990, the prevalence of LF-induced SNHL in endemic countries is still underestimated. LF, a viral hemorrhagic fever disease caused by Lassa virus (LASV), is endemic in West Africa, causing an estimated 500,000 cases and 5,000 deaths per year. Sudden-onset SNHL, one complication of LF, occurs in approximately one-third of survivors and constitutes a neglected public health and social burden. In the endemic countries, where access to hearing aids is limited, SNHL results in a decline of the quality of life for those affected. In addition, hearing loss costs Nigeria approximately 43 million dollars per year. The epidemiology of LF-induced SNHL has not been characterized well. The complication of LF induced by SNHL is also an important consideration for vaccine development and treatments. However, research into the mechanism has been hindered by the lack of autopsy samples and relevant small animal models. Recently, the first animal model that mimics the symptoms of SNHL associated with LF was developed. Preliminary data from the new animal model as well as the clinical case studies support the mechanism of immune-mediated injury that causes SNHL in LF patients. This article summarizes clinical findings of hearing loss in LF patients highlighting the association between LASV infection and SNHL as well as the potential mechanism(s) for LF-induced SNHL. Further research is necessary to identify the mechanism and the epidemiology of LF-induced SNHL.


Asunto(s)
Costo de Enfermedad , Pérdida Auditiva Sensorineural/etiología , Fiebre de Lassa/complicaciones , Salud Pública , África Occidental , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/inmunología , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/inmunología , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Ratones , Nigeria , Calidad de Vida , Factores Socioeconómicos
7.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28794024

RESUMEN

The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for the first time that pathogenic NW arenaviruses JUNV and MACV, but not the OW arenavirus LASV, activated the dsRNA-dependent PKR, another host non-self RNA sensor, during infection. Interestingly, the replication of JUNV and MACV was not restricted but was rather slightly augmented in the presence of PKR. Our data provide new evidence for a distinct interplay between host non-self RNA sensors and pathogenic arenaviruses, which also provides insights into the pathogenesis of arenaviruses and may facilitate the design of vaccines and treatments against arenavirus-caused diseases.


Asunto(s)
Arenavirus del Nuevo Mundo/patogenicidad , Arenavirus del Viejo Mundo/patogenicidad , Inmunidad Innata , Virus Junin/patogenicidad , Receptores de Reconocimiento de Patrones/metabolismo , Replicación Viral , eIF-2 Quinasa/metabolismo , Células A549 , Arenavirus del Nuevo Mundo/fisiología , Arenavirus del Viejo Mundo/fisiología , Interacciones Huésped-Patógeno , Humanos , Interferones/biosíntesis , Interferones/inmunología , Virus Junin/fisiología , Fosforilación , Receptores de Reconocimiento de Patrones/genética , Factores de Transcripción/metabolismo , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...