Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13285, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858419

RESUMEN

In this work we demonstrate a miniaturised imaging system based around a time-gated SPAD array operating in a "chip-on-tip" manner. Two versions of the system are demonstrated, each measuring 23 mm × 23 mm × 28 mm with differing fields of view and working distances. Initial tests demonstrate contrast between materials in widefield fluorescence imaging (WFLIm) mode, with frame rates of > 2 Hz achievable. Following this, WFLIm images of autofluorescence in ovine lung tissue are obtained at frame rates of ~ 1 Hz. Finally, the ability of the second system to perform simultaneous WFLIm and time of flight (aka Flourescence Lifetime Imaging Distance and Ranging, FLImDAR) is also tested. This shows that the system is capable of 4 mm resolution of object separation when tested on 3D printed samples. It is further demonstrated as being able to perform scene reconstruction on autofluorescent lung tissue. This system is, to date, the smallest chip on tip WFLIm system published, and is the first demonstration of the FLImDAR technique in a compact, portable system.

2.
Rheol Acta ; 63(3): 205-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440195

RESUMEN

Microrheology with optical tweezers (MOT) is an all-optical technique that allows the user to investigate a materials' viscoelastic properties at microscopic scales, and is particularly useful for those materials that feature complex microstructures, such as biological samples. MOT is increasingly being employed alongside 3D imaging systems and particle tracking methods to generate maps showing not only how properties may vary between different points in a sample but also how at a single point the viscoelastic properties may vary with direction. However, due to the diffraction limited shape of focussed beams, optical traps are inherently anisotropic in 3D. This can result in a significant overestimation of the fluids' viscosity in certain directions. As such, the rheological properties can only be accurately probed along directions parallel or perpendicular to the axis of trap beam propagation. In this work, a new analytical method is demonstrated to overcome this potential artefact. This is achieved by performing principal component analysis on 3D MOT data to characterise the trap, and then identify the frequency range over which trap anisotropy influences the data. This approach is initially applied to simulated data for a Newtonian fluid where the trap anisotropy induced maximum error in viscosity is reduced from ~ 150% to less than 6%. The effectiveness of the method is corroborated by experimental MOT measurements performed with water and gelatine solutions, thus confirming that the microrheology of a fluid can be extracted reliably across a wide frequency range and in any arbitrary direction. This work opens the door to fully spatially and angularly resolved 3D mapping of the rheological properties of soft materials over a broad frequency range.

3.
Biomed Opt Express ; 15(1): 212-221, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223190

RESUMEN

In this work a combined fluorescence lifetime and surface topographical imaging system is demonstrated. Based around a 126 × 192 time resolved single photon avalanche diode (SPAD) array operating in time correlated single-photon counting (TCSPC) mode, both the fluorescence lifetime and time of flight (ToF) can be calculated on a pixel by pixel basis. Initial tests on fluorescent samples show it is able to provide 4 mm resolution in distance and 0.4 ns resolution in lifetime. This combined modality has potential biomedical applications such as surgical guidance, endoscopy, and diagnostic imaging. The system is demonstrated on both ovine and human pulmonary tissue samples, where it offers excellent fluorescence lifetime contrast whilst also giving a measure of the distance to the sample surface.

4.
Opt Lett ; 48(22): 6015-6018, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966777

RESUMEN

In this Letter, a time-resolved 120 × 128 pixel single-photon avalanche diode (SPAD) sensor is used in conjunction with an array of organic semiconductor films as a means of detecting the presence of explosive vapors. Using the spatial and temporal resolution of the sensor, both fluorescence intensity and fluorescence lifetime can be monitored on a pixel-by-pixel basis for each of the polymer films arranged in a 2 × 2 grid. This represents a significant improvement on similar systems demonstrated in the past, which either offer spatial resolution without the temporal resolution required to monitor lifetime or offer only a single bulk measurement of lifetime and intensity without the spatial resolution. The potential of the sensing system is demonstrated using vapors of DNT, and differing responses for each of the four polymer films is observed. This system has clear applications as the basis of a portable chemical fingerprinting tool with applications in humanitarian demining and security.

5.
Gels ; 9(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37754431

RESUMEN

This work reviews the use of atomic force microscopy (AFM) as a tool to investigate oleogels of edible triglyceride oils. Specific attention is given to those oleogels based on phytosterols and their esters, a class of material the authors have studied extensively. This work consists of a summary of the role of AFM in imaging edible oleogels, including the processing and preparation steps required to obtain high-quality AFM images of them. Finally, there is a comparison between AFM and other techniques that may be used to obtain structural information from oleogel samples. The aim of this review is to provide a useful introduction and summary of the technique for researchers in the fields of gels and food sciences looking to perform AFM measurements on edible oleogels.

6.
Opt Express ; 31(14): 22766-22775, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475380

RESUMEN

In this work a handheld Fluorescent Lifetime IMaging (FLIM) system based on a distally mounted < 2 mm2 128 × 120 single photon avalanche diode (SPAD) array operating over a > 1 m long wired interface is demonstrated. The head of the system is ∼4.5 cm x 4.5 cm x 4.5 cm making it suitable for hand-held ex vivo applications. This is, to the best of the authors' knowledge, the first example of a SPAD array mounted on the distal end of a handheld FLIM system in this manner. All existing systems to date use a fibre to collect and relay fluorescent light to detectors at the proximal end of the system. This has clear potential biological and biomedical applications. To demonstrate this, the system is used to provide contrast between regions of differing tissue composition in ovine kidney samples, and between healthy and stressed or damaged plant leaves. Additionally, FLIM videos are provided showing that frame rates of > 1 Hz are achievable. It is thus an important step in realising an in vivo miniaturized chip-on-tip FLIM endoscopy system.


Asunto(s)
Imagen Óptica , Fotones , Animales , Ovinos , Microscopía Fluorescente/métodos , Colorantes
7.
Commun Biol ; 6(1): 463, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117487

RESUMEN

Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument named 'OptoRheo' that combines light sheet fluorescence microscopy with particle tracking microrheology. OptoRheo lets us image cells in 3D as they proliferate over several days while simultaneously sensing the mechanical properties of the surrounding extracellular and pericellular matrix at a sub-cellular length scale. OptoRheo can be used in two operational modalities (with and without an optical trap) to extend the dynamic range of microrheology measurements. We corroborated this by characterising the ECM surrounding live breast cancer cells in two distinct culture systems, cell clusters in 3D hydrogels and spheroids in suspension culture. This cutting-edge instrument will transform the exploration of drug transport through complex cell culture matrices and optimise the design of the next-generation of disease models.


Asunto(s)
Matriz Extracelular , Hidrogeles , Microscopía Fluorescente , Comunicación Celular
8.
J Am Oil Chem Soc ; 99(11): 943-950, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36619665

RESUMEN

Oleogels based on sterols such as ß-sitosterol blended with the sterol ester γ-oryzanol are a very interesting class of systems, but there are aspects of their formation and structure that remain elusive. It has previously been shown that a methyl group on the C30 position of the sterol-ester plays an important role in gelation. This work explored the effect that having C30 methyl groups on both the sterol and the sterol-ester had on the gelation process and subsequent gel structure. Lanosterol and saponified γ-oryzanol (which was synthesized as part of this study) were identified as materials of interest, as both feature a methyl group on the C30 position of their steroidal cores. It was observed that both sterols formed gels when blended with γ-oryzanol, and also that lanosterol gelled sunflower oil without the addition of γ-oryzanol. All of these gels were significantly weaker than that formed by ß-sitosterol blended with γ-oryzanol. To explore why, molecular docking simulations along with AFM and SAXS were used to examine these gels on a broad range of length scales. The results suggest that saponified γ-oryzanol-γ-oryzanol gels have a very similar structure to that of ß-sitosterol-γ-oryzanol gels. Lanosterol-γ-oryzanol gels and pure lanosterol gel, however, form with a totally different structure facilitated by the head-to-tail stacking motif exhibited by lanosterol. These results give further evidence that relatively slight changes to the molecular structure of gelators can result in significant differences in subsequent gel properties.

9.
Sci Rep ; 11(1): 5614, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692443

RESUMEN

We introduce a novel 3D microrheology system that combines for the first time Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM). The system allows the 3D tracking of an optically trapped bead, with ~ 20 nm accuracy along the optical axis. This is achieved without the need for a high precision z-stage, separate calibration sample, nor a priori knowledge of either the bead size or the optical properties of the suspending medium. Instead, we have developed a simple yet effective in situ spatial calibration method using image sharpness and exploiting the fact we image at multiple planes simultaneously. These features make OpTIMuM an ideal system for microrheology measurements, and we corroborate the effectiveness of this novel microrheology tool by measuring the viscosity of water in three dimensions, simultaneously.

10.
Langmuir ; 34(29): 8629-8638, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29961328

RESUMEN

In this work, we have employed docking and atomistic molecular dynamics (MD) simulations supported by complementary experiments using atomic force microscopy, rheology, and spectroscopy to investigate the self-assembled structure of ß-sitosterol and γ-oryzanol molecules into cylindrical tubules in a nonaqueous solvent. Docking models of several phytosterols, including sitosterol, with oryzanol and other sterol esters demonstrate that for systems to form tubules, the phytosterol sterane group must be stacked in a wedge shape with the ester sterane group and a hydrogen bond must form between the hydroxyl group of the phytosterol and the carbonyl group of the ester. MD of the self-assembled structure were initiated with the molecules in a roughly cylindrical configuration, as suggested from previous experimental studies, and the configurations were found to be stable during 50 ns simulations. We performed MD simulations of two tubules in proximity to better understand the aggregation of these fibrils and how the fibrils interact in order to stick together. We found that an interfibril network of noncovalent bonds, in particular van der Waals and π-π contacts, which is formed between the ferulic acid groups of oryzanol through the hydroxyl, methoxy, and aromatic groups, is responsible for the surface-to-surface interactions between fibrils; an observation supported by molecular spectroscopy. We believe that these interactions are of primary importance in creating a strong organogel network.

11.
Food Funct ; 8(12): 4547-4554, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29111558

RESUMEN

We demonstrate that by mixing the phytosterol-ester oryzanol with lecithin in an organic solvent, both components may be dispersed at much higher concentrations than they may be individually. Dynamic light scattering and molecular dynamics simulations show that the mechanism for this is the formation of r ∼ 4 nm mixed micelles. Infrared spectroscopy and simulations suggest that these micelles are formed due in part to hydrogen bonding of the phosphate of the lecithin head-group, and the phenol group of the oryzanol. Rheology shows that by mixing these materials at an equimolar ratio, highly viscous suspensions are created. Furthermore, by adding water to these samples, a solid-like gel may be formed which offers mechanical properties close to those desired for a margarine type spread, whilst still solubilizing the oryzanol.


Asunto(s)
Lecitinas/química , Fenilpropionatos/química , Fitosteroles/química , Geles/química , Enlace de Hidrógeno , Micelas , Simulación de Dinámica Molecular , Reología , Viscosidad
12.
Org Biomol Chem ; 15(30): 6342-6348, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28703237

RESUMEN

Hydrophobic dipeptide molecules can be used to create interfacial films covering bubbles and droplets made from a range of oils. At high pH, the dipeptide molecules form micelles which transform into a hydrogel of fibres in response to the addition of salt. We characterize the properties of the hydrogel for two different salt (MgSO4) concentrations and then we use these gels to stabilize interfaces. Under high shear, the hydrogel is disrupted and will reform around bubbles or droplets. Here, we reveal that at low dipeptide concentration, the gel is too weak to prevent ripening of the bubbles; this then reduces the long-term stability of the foam. Under the same conditions, emulsions prepared from some oils are highly stable. We examine the wetting properties of the oil droplets at a hydrogel surface as a guide to the resulting emulsions.


Asunto(s)
Dipéptidos/química , Hidrogeles/química , Humectabilidad
13.
Langmuir ; 33(18): 4537-4542, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28430456

RESUMEN

Rheology and atomic force microscopy (AFM) were employed to examine the microstructure of ß-sitosterol:γ-oryzanol organogels in sunflower oil. Using time-resolved rheology, we followed gel formation, paying specific attention to the fibril aggregation process, which had not been studied in detail previously for this system. Using AFM, we observed gel structures directly and obtained detailed information on the gel structure, far exceeding previous studies. Our analysis suggests that though gels are formed by the self-assembly and aggregation of one-dimensional fibrils, the manner in which these fibrils aggregate into ribbons results in complex structures of higher dimensionality. We emphasize that it is a surprise to find ribbons and not twisted strands. Comparing AFM images of 10% w/w and 20% w/w gelator systems, we observed differences in the degree of branching which are consistent with the rheology. We also observed the individual self-assembled fibrils which make up these gels with much greater clarity than in previous microscopy studies, and the fibril diameters of ∼9.8 nm we measured agree excellently with those obtained from existing small-angle neutron scattering data. These results provide new insight into the structure and formation kinetics of this important organogel system.


Asunto(s)
Geles/química , Fenilpropionatos , Dispersión del Ángulo Pequeño , Sitoesteroles
14.
Phys Chem Chem Phys ; 18(31): 21937-48, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27439750

RESUMEN

Excited state absorption (ESA) is studied using time-dependent density functional theory and compared with experiments performed in dilute solutions. The molecules investigated are a fluorene pentamer, polyfluorene F8, the alternating F8 copolymer with benzothiadiazole F8BT, and two blue-emitting random copolymers F8PFB and F8TFB. Calculated and measured spectra show qualitatively comparable results. The ESA cross-section of co-polymers at its maximum is about three times lower than that of F8. The ESA spectra are found to change little upon structural relaxation of the excited state, or change in the order of sub-units in a co-polymer, for all studied molecules. In all these molecules, the strongest ESA transition is found to arise from the same electronic process, exhibiting a reversal of the charge parity. In addition, F8PFB and F8TFB are found to possess almost identical electronic behaviour.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...