Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pain Res ; 13: 1305-1313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581572

RESUMEN

BACKGROUND: Cancer-induced bone pain (CIBP) is a debilitating chronic pain condition caused by injury to bone nerve terminals due to primary or metastasized bone tumors. Pain manifests as enhanced sensitivity, not only over the affected bone site but also at distal areas that share common nerve innervation with the tumor. In this study, we aim to understand how tumor-induced primary and distal pain sensitivities are affected by bupivacaine-induced block of bone nerve endings in a rat model of CIBP. METHODS: MRMT-1 breast cancer cells were injected into the proximal segment of tibia in female Sprague-Dawley rats. Radiograms and micro-CT images were obtained to confirm tumor growth. Bupivacaine was injected peritumorally at day 7 or day 14 post-tumor induction, and withdrawal thresholds in response to pressure and punctate mechanical stimulus were recorded from the knee and hind-paw, respectively. Immunohistochemical studies for the determination of ATF3 and GFAP expression in DRG and spinal cord sections were performed. RESULTS: Rats developed primary and distal hyperalgesia after MRMT-1 administration that was sustained for 2 weeks. Peritumoral administration of bupivacaine in 7-day post-tumor-induced (PTI) rats resulted in a reversal of both primary and distal hyperalgesia for 20-30 mins. However, bupivacaine failed to reverse distal hyperalgesia in 14 day-PTI rats. ATF3 and GFAP expression were much enhanced in 14 day-PTI animals, compared to 7 day-PTI group. CONCLUSION: Results from this study strongly suggest that distal hyperalgesia of late-stage CIBP demonstrates differential characteristics consistent with neuropathic pain as compared to early stage, which appears more inflammatory in nature.

2.
ACS Appl Mater Interfaces ; 8(11): 6925-34, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26936629

RESUMEN

Drug-coated sutures are widely used as delivery depots for antibiotics and anti-inflammatory drugs at surgical wound sites. Although drug-laden coating provides good localized drug concentration, variable loading efficiency and release kinetics limits its use. Alternatively, drug incorporation within suture matrices is hampered by the harsh fabrication conditions required for suture-strength enhancement. To circumvent these limitations, we fabricated mechanically robust electrospun core-sheath yarns as sutures, with a central poly-l-lactic acid core, and a drug-eluting poly-lactic-co-glycolic acid sheath. The electrospun sheath was incorporated with aceclofenac or insulin to demonstrate versatility of the suture in loading both chemical and biological class of drugs. Aceclofenac and insulin incorporated sutures exhibited 15% and 4% loading, and release for 10 and 7 days, respectively. Aceclofenac sutures demonstrated reduced epidermal hyperplasia and cellularity in skin-inflammation animal model, while insulin loaded sutures showed enhanced cellular migration in wound healing assay. In conclusion, we demonstrate an innovative strategy of producing mechanically strong, prolonged drug-release sutures loaded with different classes of drugs.


Asunto(s)
Diclofenaco/análogos & derivados , Fibroblastos/metabolismo , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Suturas , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Diclofenaco/química , Diclofenaco/farmacocinética , Diclofenaco/farmacología , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA